def apply_thresholing(self, image):
        parameters = self._thresh_params

        image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)

        # clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
        # image_gray = clahe.apply(image_gray)

        gradx_thresh = (parameters['sobel_x_thresh_min'], parameters['sobel_x_thresh_max'])
        grady_thresh = (parameters['sobel_y_thresh_min'], parameters['sobel_y_thresh_max'])
        magnitude_thresh = (parameters['mag_thresh_min'], parameters['mag_thresh_max'])
        dir_thresh = (parameters['dir_thresh_min'], parameters['dir_thresh_max'])

        ksize = parameters['sobel_kernel']

        # Apply each of the thresholding functions
        gradx = abs_sobel_thresh(image_gray, orient='x', sobel_kernel=ksize, thresh=gradx_thresh)
        grady = abs_sobel_thresh(image_gray, orient='y', sobel_kernel=ksize, thresh=grady_thresh)
        mag_binary = mag_thresh(image_gray, sobel_kernel=ksize, thresh=magnitude_thresh)
        dir_binary = dir_threshold(image_gray, sobel_kernel=ksize, thresh=dir_thresh)

        gradient_threshold = np.zeros_like(dir_binary)
        gradient_threshold[((gradx == 1) & (grady == 1)) | ((dir_binary == 1) & (mag_binary == 1))] = 1

        color_threshold = create_binary_image(image)

        binary = np.zeros_like(gradient_threshold)
        binary[(color_threshold == 1) | (gradient_threshold == 1)] = 1
        # binary[(gradient_threshold == 1)] = 1

        return binary
Пример #2
0
def thresholding(img):
    #print(img.shape)
    #setting all sorts of thresholds
    #cv2.imshow("orig", img)
    x_thresh = utils.abs_sobel_thresh(img,
                                      orient='x',
                                      thresh_min=10,
                                      thresh_max=230)
    #cv2.imshow("x_thresh",x_thresh*255)
    mag_thresh = utils.mag_thresh(img, sobel_kernel=3, mag_thresh=(30, 150))
    #cv2.imshow("mag_thresh",mag_thresh*255)
    dir_thresh = utils.dir_threshold(img, sobel_kernel=3, thresh=(0.7, 1.3))
    #cv2.imshow("dir_thresh",dir_thresh*255)
    hls_thresh = utils.hls_select(img, thresh=(180, 255))
    #cv2.imshow("hls_thresh",hls_thresh*255)
    lab_thresh = utils.lab_select(img, thresh=(155, 200))
    #cv2.imshow("lab_thresh",lab_thresh*255)
    luv_thresh = utils.luv_select(img, thresh=(225, 255))
    #cv2.imshow("luv_thresh",luv_thresh)

    #Thresholding combination
    threshholded = np.zeros_like(x_thresh)
    threshholded[((x_thresh == 1) & (mag_thresh == 1)) | ((dir_thresh == 1) &
                                                          (hls_thresh == 1)) |
                 (lab_thresh == 1) | (luv_thresh == 1)] = 1
    #cv2.imshow("threshholded", threshholded*255)
    #cv2.waitKey(0)
    return threshholded
Пример #3
0
def thresholding(img):
    #    x_thresh = utils.abs_sobel_thresh(img, orient='x', thresh_min=55, thresh_max=100)
    #    mag_thresh = utils.mag_thresh(img, sobel_kernel=3, mag_thresh=(70, 255))
    #    dir_thresh = utils.dir_threshold(img, sobel_kernel=3, thresh=(0.7, 1.3))
    #    s_thresh = utils.hls_select(img,channel='s',thresh=(160, 255))
    #    s_thresh_2 = utils.hls_select(img,channel='s',thresh=(200, 240))
    #
    #    white_mask = utils.select_white(img)
    #    yellow_mask = utils.select_yellow(img)

    x_thresh = utils.abs_sobel_thresh(img,
                                      orient='x',
                                      thresh_min=10,
                                      thresh_max=230)
    mag_thresh = utils.mag_thresh(img, sobel_kernel=3, mag_thresh=(30, 150))
    dir_thresh = utils.dir_threshold(img, sobel_kernel=3, thresh=(0.7, 1.3))
    hls_thresh = utils.hls_select(img, thresh=(180, 255))
    lab_thresh = utils.lab_select(img, thresh=(155, 200))
    luv_thresh = utils.luv_select(img, thresh=(225, 255))
    #Thresholding combination
    threshholded = np.zeros_like(x_thresh)
    threshholded[((x_thresh == 1) & (mag_thresh == 1)) | ((dir_thresh == 1) &
                                                          (hls_thresh == 1)) |
                 (lab_thresh == 1) | (luv_thresh == 1)] = 1

    #    threshholded = np.zeros_like(x_thresh)
    #    threshholded[((x_thresh == 1)) | ((mag_thresh == 1) & (dir_thresh == 1))| (white_mask>0)|(s_thresh == 1) ]=1

    return threshholded
Пример #4
0
    def process_video(self):
        test_image = self.input_image

        sobel_kernel = self.sobel_kernel.value
        sobel_x_thresh_min = self.sobel_x_thresh_min.value
        sobel_x_thresh_max = self.sobel_x_thresh_max.value
        sobel_y_thresh_min = self.sobel_y_thresh_min.value
        sobel_y_thresh_max = self.sobel_y_thresh_max.value

        mag_kernel = self.mag_kernel.value
        mag_thresh_min = self.mag_thresh_min.value
        mag_thresh_max = self.mag_thresh_max.value
        dir_kernel = self.dir_kernel.value
        dir_thresh_min = self.dir_thresh_min.value / 10
        dir_thresh_max = self.dir_thresh_max.value / 10
        sat_thresh_min = self.sat_thresh_min.value
        sat_thresh_max = self.sat_thresh_max.value

        # gradient_threshold = threshold_image(test_image, ksize=sobel_kernel,
        #                                      gradx_thresh=(sobel_x_thresh_min, sobel_x_thresh_max),
        #                                      grady_thresh=(sobel_y_thresh_min, sobel_y_thresh_max),
        #                                      magnitude_thresh=(mag_thresh_min, mag_thresh_max),
        #                                      dir_thresh=(dir_thresh_min, dir_thresh_max))

        ksize = sobel_kernel

        # Apply each of the thresholding functions
        gradx = abs_sobel_thresh(test_image, orient='x', sobel_kernel=ksize, thresh=(sobel_x_thresh_min, sobel_x_thresh_max))
        grady = abs_sobel_thresh(test_image, orient='y', sobel_kernel=ksize, thresh=(sobel_y_thresh_min, sobel_y_thresh_max))
        mag_binary = mag_thresh(test_image, sobel_kernel=ksize, thresh=(mag_thresh_min, mag_thresh_max))
        dir_binary = dir_threshold(test_image, sobel_kernel=ksize, thresh=(dir_thresh_min, dir_thresh_max))

        gradient_threshold = np.zeros_like(dir_binary)
        # gradient_threshold[(gradx == 1)] = 1
        gradient_threshold[((gradx == 1) & (grady == 1)) | ((dir_binary == 1) & (mag_binary == 1))] = 1

        image_hsl = cv2.cvtColor(test_image, cv2.COLOR_RGB2HLS)
        s_channel = image_hsl[:, :, 2]
        color_threshold = np.zeros_like(s_channel)
        color_threshold[(s_channel >= sat_thresh_min) & (s_channel <= sat_thresh_max)] = 1

        color_threshold = create_binary_image(test_image)
        binary = np.zeros_like(gradient_threshold)
        binary[(color_threshold == 1) | (gradient_threshold == 1)] = 1

        # binary = np.zeros_like(gradient_threshold)
        # binary[(color_threshold == 1) | (gradient_threshold == 1)] = 1
        # binary[(gradient_threshold == 1)] = 1

        self._write_image(binary)

        self._binary = cv2.imread('out.jpg', 0)

        print('Created image')

        self._image.value = self._binary
        self._image.repaint()
Пример #5
0
def thresholding(img):
    x_thresh = utils.abs_sobel_thresh(img,
                                      orient='x',
                                      thresh_min=10,
                                      thresh_max=230)
    mag_thresh = utils.mag_thresh(img, sobel_kernel=3, mag_thresh=(30, 150))
    dir_thresh = utils.dir_threshold(img, sobel_kernel=3, thresh=(0.7, 1.3))
    hls_thresh = utils.hls_select(img, thresh=(180, 255))
    lab_thresh = utils.lab_select(img, thresh=(155, 200))
    luv_thresh = utils.luv_select(img, thresh=(225, 255))
    #Thresholding combination
    threshholded = np.zeros_like(x_thresh)
    threshholded[((x_thresh == 1) & (mag_thresh == 1)) | ((dir_thresh == 1) &
                                                          (hls_thresh == 1)) |
                 (lab_thresh == 1) | (luv_thresh == 1)] = 1

    return threshholded
Пример #6
0
    undistorted.append(img)

trans_on_test=[]
for img in undistorted:
    src = np.float32([[(203, 720), (585, 460), (695, 460), (1127, 720)]])
    dst = np.float32([[(320, 720), (320, 0), (960, 0), (960, 720)]])
    M = cv2.getPerspectiveTransform(src, dst)
    trans = cv2.warpPerspective(img, M, img.shape[1::-1], flags=cv2.INTER_LINEAR)
    trans_on_test.append(trans)
    
thresh = []
binary_wrapeds = []
histogram = []
for img in undistorted:
    x_thresh = utils.abs_sobel_thresh(img, orient='x', thresh_min=55, thresh_max=100)
    mag_thresh = utils.mag_thresh(img, sobel_kernel=3, mag_thresh=(70, 255))
    dir_thresh = utils.dir_threshold(img, sobel_kernel=3, thresh=(0.7, 1.3))
    s_thresh = utils.hls_select(img,channel='s',thresh=(160, 255))
    s_thresh_2 = utils.hls_select(img,channel='s',thresh=(200, 240))
    
    white_mask = utils.select_white(img)
    yellow_mask = utils.select_yellow(img)
  
    combined = np.zeros_like(mag_thresh)
#    combined[(x_thresh==1) | ((mag_thresh == 1) & (dir_thresh == 1)) | (s_thresh==1)] = 1
#    combined[((mag_thresh == 1) & (dir_thresh == 1))] = 1
    combined[((x_thresh == 1) | (s_thresh == 1)) | ((mag_thresh == 1) & (dir_thresh == 1))| (white_mask>0)|(s_thresh_2 == 1) ]=1
    
    src = np.float32([[(203, 720), (585, 460), (695, 460), (1127, 720)]])
    dst = np.float32([[(320, 720), (320, 0), (960, 0), (960, 720)]])
    M = cv2.getPerspectiveTransform(src, dst)
Пример #7
0
plt.figure(figsize=(20, 40))
for i in range(0, (len(undistorted_test_images))):
    plt.subplot(len(undistorted_test_images), 2, 2 * i + 1)
    plt.title('original image')
    plt.imshow(test_imgs2[i])
    plt.subplot(len(undistorted_test_images), 2, 2 * i + 2)
    plt.title('after x_thresh_method')
    plt.imshow(x_thresh_method[i], cmap='gray')
plt.savefig('x_thresh_method.png')

# In[12]:

#mag_thresholding methdods
mag_thresh_method = []
for img in test_imgs2:
    mag_thresh = utils.mag_thresh(img, sobel_kernel=9, mag_thresh=(50, 100))
    mag_thresh_method.append(mag_thresh)

# In[13]:

plt.figure(figsize=(20, 40))
for i in range(0, (len(undistorted_test_images))):
    plt.subplot(len(undistorted_test_images), 2, 2 * i + 1)
    plt.title('original image')
    plt.imshow(test_imgs2[i])
    plt.subplot(len(undistorted_test_images), 2, 2 * i + 2)
    plt.title('after mag_thresh_method')
    plt.imshow(mag_thresh_method[i], cmap='gray')
plt.savefig('mag_thresh_method.png')

# In[14]: