def create_layers(self): self.layer_conv1, self.weights_conv1 = new_conv_layer( prev_layer=self.X_img, in_channels=self.num_channels, out_channels=self.num_filters1, filter_size=self.conv_filter_size1, name='conv-1') self.layer_conv2, self.weights_conv2 = new_conv_layer( prev_layer=self.layer_conv1, in_channels=self.num_filters1, out_channels=self.num_filters2, filter_size=self.conv_filter_size2, name='conv-2') self.flattened, self.num_features = new_flatten_layer( prev_layer=self.layer_conv2) self.fc_layer1 = new_fc_layer(prev_layer=self.flattened, num_inputs=self.num_features, num_outputs=self.fc_size, name='fc-1', relu=True) self.fc_layer2 = new_fc_layer(prev_layer=self.fc_layer1, num_inputs=self.fc_size, num_outputs=self.num_classes, name='fc-2') self.prediction = tf.nn.softmax(self.fc_layer2) self.y_pred_cls = tf.argmax(self.prediction, axis=1)
def configure_network1(dataset, input_dim): global x, y_true, num_classes num_features = int(input_dim) fc_size1 = int(1024) print("num_classes {} num_features {}".format(num_classes, num_features)) layer_fc1 = new_fc_layer(input=dataset, num_inputs=num_features, num_outputs=fc_size1, use_relu=False) layer_fc2 = new_fc_layer(input=layer_fc1, num_inputs=fc_size1, num_outputs=num_classes, use_relu=False) y_pred = tf.nn.softmax(layer_fc2) print(y_pred) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_true) cost = tf.reduce_mean(cross_entropy) return y_pred, cost
def create_layers(self): self.layer_conv1, self.weights_conv1 = new_conv_layer( prev_layer=self.X_img, in_channels=self.num_channels, out_channels=self.num_filters1, filter_size=self.conv_filter_size1, name=self.name + 'conv-1') self.layer_conv2, self.weights_conv2 = new_conv_layer( prev_layer=self.layer_conv1, in_channels=self.num_filters1, out_channels=self.num_filters2, filter_size=self.conv_filter_size2, name=self.name + 'conv-2') self.flattened, self.num_features = new_flatten_layer( prev_layer=self.layer_conv2) self.fc_layer1 = new_fc_layer(prev_layer=self.flattened, num_inputs=self.num_features, num_outputs=self.fc_size, name=self.name + 'fc-1', relu=True)