Пример #1
0
                 overwrite=True)
    hp.write_map(f"outputs/map_rms_median_{nside}.fits", median_rms,
                 overwrite=True)
    hp.write_map(f"outputs/map_error_mean_{nside}.fits", mean_error,
                 overwrite=True)
    hp.write_map(f"outputs/map_error_median_{nside}.fits", median_error,
                 overwrite=True)
else:
    mean_rms = hp.read_map(f"outputs/map_rms_mean_{nside}.fits",
                           verbose=False)
    median_rms = hp.read_map(f"outputs/map_rms_median_{nside}.fits",
                             verbose=False)
    mean_error = hp.read_map(f"outputs/map_error_mean_{nside}.fits",
                             verbose=False)
    median_error = hp.read_map(f"outputs/map_error_median_{nside}.fits",
                               verbose=False)


plot_lotss_map(map_n, title="Counts")
plot_lotss_map(msk_pt*1.+msk_p*1.+msk_d*1., title="Low-res masks")
plot_lotss_map(mean_error, title='Error mean',
               max=0.35, unit='mJy/beam')
plot_lotss_map(median_error, title='Error median',
               max=0.35, unit='mJy/beam')
plot_lotss_map(mean_rms, title='RMS mean',
               max=0.35, unit='mJy/beam')
plot_lotss_map(median_rms, title='RMS median',
               max=0.35, unit='mJy/beam')

plt.show()
Пример #2
0
        npoint_good[is_good] += 1
        ivar_good[is_good] += inv_noivar

# Make total mask and write to file
msk_all = np.zeros(npix_hi, dtype=bool)
msk_all[npoint_all > 0] = 1
msk_good = np.zeros(npix_hi, dtype=bool)
msk_good[npoint_good > 0] = 1

hp.write_map(pt.prefix_out + f'hp{nside_hi}_mask.fits.gz',
             msk_all, overwrite=True)
hp.write_map(pt.prefix_out + f'hp{nside_hi}_npoint.fits.gz',
             npoint_all, overwrite=True)
hp.write_map(pt.prefix_out + f'hp{nside_hi}_ivar.fits.gz',
             ivar_all, overwrite=True)
hp.write_map(pt.prefix_out + f'hp{nside_hi}_mask_good.fits.gz',
             msk_good, overwrite=True)
hp.write_map(pt.prefix_out + f'hp{nside_hi}_ivar_good.fits.gz',
             ivar_good, overwrite=True)
hp.write_map(pt.prefix_out + f'hp{nside_hi}_npoint_good.fits.gz',
             npoint_good, overwrite=True)

# Plot
plot_lotss_map(npoint_all)
plot_lotss_map(msk_all)
plot_lotss_map(ivar_all)
plot_lotss_map(npoint_good)
plot_lotss_map(msk_good)
plot_lotss_map(ivar_good)
plt.show()
Пример #3
0
        cl = cls[p]
        nl = nls[p]
        clth = cls_th[p]
        pp = get_ppair_name(p, p)
        err = np.sqrt(np.diag(covs[pp]))
        plt.errorbar(l_eff, cl, yerr=err, fmt='r.', label=r'Data')
        plt.plot(l_arr, clth, 'k-', label='Cov. model')
        if not np.all(nl == 0):
            plt.plot(l_eff, nl, 'g--', label='Noise bias')
        plt.loglog()
        plt.xlim([0.9 * l_eff[0], 1.1 * l_eff[-1]])
        plt.xlabel(r'$\ell$', fontsize=14)
        plt.ylabel(r'$C_\ell^{%s}$' % p, fontsize=14)
        plt.legend(loc='upper right')
        fname = os.path.join(args.output_dir, f'cl_{p}.png')
        plt.savefig(fname, bbox_inches='tight')

    for f in fields:
        n = f.name
        k = f.kind
        ut.plot_lotss_map(f.mp, title=f'Map {n}')
        plt.savefig(os.path.join(args.output_dir, f'map_{k}.png'),
                    bbox_inches='tight')
        ut.plot_lotss_map(f.msk, title=f'Mask {n}')
        plt.savefig(os.path.join(args.output_dir, f'mask_{k}.png'),
                    bbox_inches='tight')
    plt.show()

if args.verbose:
    print('Success!')
Пример #4
0
ll, nll, cll = np.loadtxt('data/nlkk.dat', unpack=True)
ll = ll.astype(int)
cl = np.zeros(ll[-1] + 1)
cl[ll[0]:] = cll
nl = np.zeros(ll[-1] + 1)
nl[ll[0]:] = nll
wl = (cl - nl) / np.maximum(cl, np.ones_like(cl) * 1E-10)
alm_planck = hp.almxfl(alm_planck, wl)
map_planck = hp.alm2map(alm_planck, nside, verbose=False)
map_delta = f.mp
#alm_delta = hp.map2alm(map_delta)
#alm_delta = hp.almxfl(alm_delta, wl)
#map_delta = hp.alm2map(alm_delta, nside, verbose=False)

ut.plot_lotss_map(map_planck * mask_lofar * mask_planck,
                  mask=mask_lofar * mask_planck,
                  title=r'$\kappa$',
                  fname='plots/kappa.pdf')
ut.plot_lotss_map(p_map0p1,
                  mask=mask_lofar,
                  title=r'Depth, $I_{\rm cut}=0.1\,{\rm MJy}$',
                  fname='plots/depth_0p1.pdf')
ut.plot_lotss_map(p_map2,
                  mask=mask_lofar,
                  title=r'Depth, $I_{\rm cut}=2\,{\rm MJy}$',
                  fname='plots/depth_2p0.pdf')
ut.plot_lotss_map(temp_deproj,
                  mask=mask_lofar,
                  title=r'Pointing noise variations',
                  fname='plots/ivar.pdf')
ut.plot_lotss_map(f.msk, title=r'LOFAR mask', fname='plots/mask.pdf')
ut.plot_lotss_map(map_delta,
Пример #5
0
    flux_all = np.concatenate([flux_all, flux])
    flux_signal_all = np.concatenate([flux_signal_all, flux_signal])
    print(i, len(ra_all))

hdu = fits.BinTableHDU.from_columns([
    fits.Column(name='RA', format='D', array=ra_all),
    fits.Column(name='DEC', format='D', array=dec_all),
    fits.Column(name='Flux_true', format='D', array=flux_signal_all),
    fits.Column(name='Flux', format='D', array=flux_all)
])
hdu.writeto("outputs/random.fits", overwrite=True)

plt.figure()
plt.hist(np.log10(flux_signal_all),
         bins=100,
         density=True,
         color='b',
         histtype='step')
plt.hist(np.log10(flux_all),
         bins=100,
         density=True,
         color='y',
         histtype='step')

ip_lo = hp.ang2pix(nside_lo, np.radians(90 - dec_all), np.radians(ra_all))
m = np.bincount(ip_lo, minlength=npix_lo)
plot_lotss_map(map_rms)
plot_lotss_map(m)

plt.show()
Пример #6
0
                  default=2.,
                  type=float,
                  help='Flux threshold (default: 2)')
parser.add_option('--snr',
                  dest='snr',
                  default=5,
                  type=int,
                  help='S/N threshold (default: 5)')
(o, args) = parser.parse_args()

if o.use_median:
    meanmed = 'median'
else:
    meanmed = 'mean'

fname_out = "outputs/p_map_rms_" + meanmed + ("_Imin%.3lf.fits" % o.I_thr)
fname_rms = "outputs/map_rms_" + meanmed + "_%d.fits" % (o.nside)

# Read mask and rms map
map_rms = hp.read_map(fname_rms, verbose=False)

# Read and initialize PDF
fpdf = FluxPDF()

# Compute probability map
p_map = fpdf.compute_p_map(o.snr, map_rms, o.I_thr)
hp.write_map(fname_out, p_map, overwrite=True)

plot_lotss_map(p_map)
plt.show()