from utils import create_and_add_mapping, populate import elasticsearch from pprint import pprint es = elasticsearch.Elasticsearch() index_name = "my_index" if es.indices.exists(index_name): es.indices.delete(index_name) create_and_add_mapping(es, index_name) populate(es, index_name) results = es.search( index=index_name, body={"size": 0, "aggs": { "pterms": {"terms": {"field": "name", "size": 10}} } }) pprint(results) results = es.search( index=index_name, body={"size": 0, "aggs": { "date_histo": {"date_histogram": {"field": "date", "interval": "month"}} } }) pprint(results)
import elasticsearch from pprint import pprint es = elasticsearch.Elasticsearch() index_name = "my_index" type_name = "my_type" if es.indices.exists(index_name): es.indices.delete(index_name) from utils import create_and_add_mapping, populate create_and_add_mapping(es, index_name, type_name) populate(es, index_name, type_name) results = es.search(index_name, type_name, {"query": {"match_all": {}}}) pprint(results) results = es.search(index_name, type_name, { "query": { "term": {"name": {"boost": 3.0, "value": "joe"}}} }) pprint(results) results = es.search(index_name, type_name, {"query": { "bool": { "filter": { "bool": { "should": [ {"term": {"position": 1}}, {"term": {"position": 2}}]}
# show emails print(context['mails']) # require email for login email = input('ingrese email para iniciar: ') # show initial view print(f'bienvenido de nuevo {email}') context['email'] = email initialLoginView(context) # main loop to ask for queries stop = False while not stop: selection = instruction_menu() if not selection: continue elif selection == 'finish': stop = True continue else: selection(context) if __name__ == "__main__": client = MongoClient() db = client['test-database'] context = {'db': db} pdb.set_trace() # if no data, populate database mails = populate() context['mails'] = mails # run application ui(context)
import elasticsearch from pprint import pprint es = elasticsearch.Elasticsearch() index_name = "my_index" type_name = "my_type" from utils import create_and_add_mapping, populate create_and_add_mapping(es, index_name, type_name) populate(es, index_name, type_name) results = es.search(index_name, type_name, {"query": {"match_all": {}}}) pprint(results) results = es.search(index_name, type_name, { "query": { "query": { "term": {"name": {"boost": 3.0, "value": "joe"}}} }}) pprint(results) results = es.search(index_name, type_name, {"query": { "filtered": { "filter": { "or": [ {"term": {"position": 1}}, {"term": {"position": 2}}] }, "query": {"match_all": {}}}}}) pprint(results)
EPOCHS = 20 BATCH_SIZE = [1, 2, 4, 8, 16, 32] LR = [0.1, 0.01, 0.001, 0.0001] LOSS = rmse PATIENCE = 3 MAX_QUEUE_SIZE = 32 SHUFFLE = True directory = '../dataset/training/' if __name__ == '__main__': model_name = input("Enter a name for your model: ") dataset = {angle: [] for angle in range(MINIMUM_ANGLE, MAXIMUM_ANGLE + 1)} populate(dataset, directory, '.png') training_dataset, validation_dataset = split( dataset, training_size=TRAINING_SIZE, validation_size=VALIDATION_SIZE) distribution_hist('../visualizations/distribution_pre-balance.png', training_dataset) balance(training_dataset, downsample_threshold=DOWNSAMPLE_THRESHOLD, upsample_threshold=UPSAMPLE_THRESHOLD) distribution_hist('../visualizations/distribution_post-balance.png', training_dataset) training_data = unpack(training_dataset)
def remove(self, email): if isinstance(email, list) == False: email = [email,] file_name = populate('unsubscribe', email, self.name) raw = run(self.members_unsubscribe_cmd, file_name, self.name)