def index(): # pkl-list get pkl_list = sorted( [pkl for pkl in os.listdir('model') if pkl.endswith('.pkl')]) pkl_select = [ 'Depth {:s} Branch {:s}'.format( a.replace('.pkl', '').split('-')[2], a.replace('.pkl', '').split('-')[3]) for a in pkl_list ] return render_template('search.html', bg_path=BG_PATH, logo_path=LOGO_PATH, pkl_list=pkl_select, tar_path=utils.random_image('static/data'))
import numpy as np import pytest from stardist import star_dist3D, Rays_GoldenSpiral, relabel_image_stardist3D from utils import random_image, real_image3d, check_similar, circle_image @pytest.mark.parametrize('img', (real_image3d()[1], random_image( (33, 44, 55)))) @pytest.mark.parametrize('n_rays', (4, 16, 32)) @pytest.mark.parametrize('grid', ((1, 1, 1), (1, 2, 4))) def test_types(img, n_rays, grid): mode = "cpp" rays = Rays_GoldenSpiral(n_rays) gt = star_dist3D(img, rays=rays, grid=grid, mode=mode) for dtype in (np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32): x = star_dist3D(img.astype(dtype), rays=rays, grid=grid, mode=mode) print( "test_stardist3D (mode {mode}) for shape {img.shape} and type {dtype}" .format(mode=mode, img=img, dtype=dtype)) check_similar(gt, x) @pytest.mark.gpu @pytest.mark.parametrize('img', (real_image3d()[1], random_image( (33, 44, 55)))) @pytest.mark.parametrize('n_rays', (4, 16, 32)) @pytest.mark.parametrize('grid', ((1, 1, 1), (1, 2, 4))) def test_types_gpu(img, n_rays, grid): mode = "opencl" rays = Rays_GoldenSpiral(n_rays) gt = star_dist3D(img, rays=rays, grid=grid, mode=mode)
import numpy as np import pytest from stardist import star_dist, edt_prob, non_maximum_suppression, dist_to_coord, polygons_to_label from stardist.matching import matching from utils import random_image, real_image2d, check_similar @pytest.mark.parametrize('img', (real_image2d()[1], random_image((128, 123)))) def test_bbox_search(img): prob = edt_prob(img) dist = star_dist(img, n_rays=32, mode="cpp") coord = dist_to_coord(dist) nms_a = non_maximum_suppression(coord, prob, prob_thresh=0.4, verbose=False, max_bbox_search=False) nms_b = non_maximum_suppression(coord, prob, prob_thresh=0.4, verbose=False, max_bbox_search=True) check_similar(nms_a, nms_b) @pytest.mark.parametrize('img', (real_image2d()[1], )) def test_acc(img): prob = edt_prob(img) dist = star_dist(img, n_rays=32, mode="cpp") coord = dist_to_coord(dist) points = non_maximum_suppression(coord, prob, prob_thresh=0.4)
import numpy as np import pytest from stardist import star_dist3D, Rays_GoldenSpiral, relabel_image_stardist3D from utils import random_image, real_image3d, check_similar, circle_image, Timer from time import time @pytest.mark.parametrize('img', (real_image3d()[1], random_image((33, 44, 55)))) @pytest.mark.parametrize('n_rays', (4, 16, 32)) @pytest.mark.parametrize('grid', ((1, 1, 1), (1, 2, 4))) def test_types(img, n_rays, grid): mode = "cpp" rays = Rays_GoldenSpiral(n_rays) gt = star_dist3D(img, rays=rays, grid=grid, mode=mode) for dtype in (np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32): x = star_dist3D(img.astype(dtype), rays=rays, grid=grid, mode=mode) print("test_stardist3D (mode {mode}) for shape {img.shape} and type {dtype}".format( mode=mode, img=img, dtype=dtype)) check_similar(gt, x) @pytest.mark.gpu @pytest.mark.parametrize('img', (real_image3d()[1], random_image((33, 44, 55)))) @pytest.mark.parametrize('n_rays', (4, 16, 32)) @pytest.mark.parametrize('grid', ((1, 1, 1), (1, 2, 4))) def test_types_gpu(img, n_rays, grid): mode = "opencl" rays = Rays_GoldenSpiral(n_rays) gt = star_dist3D(img, rays=rays, grid=grid, mode=mode) for dtype in (np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32):