import datetime as dt # from sklearn.metrics import log_loss # import utils import models import params ############################################################################### if __name__ == '__main__': np.random.seed(1017) target = 'is_iceberg' #Load data test, test_bands = utils.read_jason(file='test.json', loc='../input/') test_X_dup = utils.rescale(test_bands) test_meta = test['inc_angle'].values tmp = dt.datetime.now().strftime("%Y-%m-%d-%H-%M") file_weights = '../weights/weights_current.hdf5' if os.path.isfile(file_weights): #define and load model nb_filters = params.nb_filters nb_dense = params.nb_dense weights_file = params.weights_file model = models.get_model(img_shape=(75, 75, 2), f=nb_filters, h=nb_dense)
out = Lambda(lambda img: ktf.image.resize_images(img, 224, 224))(inp) model = Model(input=inp, output=out) out = model.predict(images) return out ############################################################################### if __name__ == '__main__': np.random.seed(1017) target = 'is_iceberg' #Load data train, train_bands = utils.read_jason(file='train.json') test, test_bands = utils.read_jason(file='test.json') #target train_y = train[target].values split_indices = train_y.copy() #data set train_X = utils.rescale(train_bands) train_meta = train['inc_angle'].values test_X_dup = utils.rescale(test_bands) test_meta = test['inc_angle'].values opt_augments = { 'Flip': False, 'Rotate': False,