Пример #1
0
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--total_assets_path', required=True)
  parser.add_argument('--intangible_assets_path', required=True)
  parser.add_argument('--total_liabilities_path', required=True)
  parser.add_argument('--prices_path', required=True)
  parser.add_argument('--outstanding_shares_path', required=True)
  parser.add_argument('--output_path', required=True)
  parser.add_argument('--verbose', action='store_true')
  args = parser.parse_args()

  utils.setup_logging(args.verbose)

  ta_map = utils.read_map(args.total_assets_path)
  tl_map = utils.read_map(args.total_liabilities_path)
  p_map = utils.read_map(args.prices_path)
  s_map = utils.read_map(args.outstanding_shares_path)
  tickers = ta_map.keys() & tl_map.keys() & p_map.keys() & s_map.keys()

  # intangible assets are 0 by default
  ia_map = dict()
  for t in tickers:
    ia_map[t] = 0.0
  ia_part = utils.read_map(args.intangible_assets_path)
  for k, v in ia_part.items():
    ia_map[k] = v

  with open(args.output_path, 'w') as fp:
    for ticker in sorted(tickers):
      output = ((ta_map[ticker] - ia_map[ticker] - tl_map[ticker])
                / s_map[ticker] / p_map[ticker])
      print('%s %f' % (ticker, output), file=fp)
Пример #2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--operating_cashflow_path', required=True)
    parser.add_argument('--preferred_dividend_path', required=True)
    parser.add_argument('--prices_path', required=True)
    parser.add_argument('--outstanding_shares_path', required=True)
    parser.add_argument('--output_path', required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()

    utils.setup_logging(args.verbose)

    cf_map = utils.read_map(args.operating_cashflow_path)
    p_map = utils.read_map(args.prices_path)
    s_map = utils.read_map(args.outstanding_shares_path)
    tickers = cf_map.keys() & p_map.keys() & s_map.keys()

    # preferred dividend is default to 0
    pd_map = dict()
    for t in tickers:
        pd_map[t] = 0.0
    pd_part = utils.read_map(args.preferred_dividend_path)
    for k, v in pd_part.items():
        pd_map[k] = v

    with open(args.output_path, 'w') as fp:
        for ticker in sorted(tickers):
            output = ((cf_map[ticker] - pd_map[ticker]) / s_map[ticker] /
                      p_map[ticker])
            print('%s %f' % (ticker, output), file=fp)
Пример #3
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--total_assets_path', required=True)
    parser.add_argument('--intangible_assets_path', required=True)
    parser.add_argument('--total_liabilities_path', required=True)
    parser.add_argument('--prices_path', required=True)
    parser.add_argument('--outstanding_shares_path', required=True)
    parser.add_argument('--output_path', required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()

    utils.setup_logging(args.verbose)

    ta_map = utils.read_map(args.total_assets_path)
    tl_map = utils.read_map(args.total_liabilities_path)
    p_map = utils.read_map(args.prices_path)
    s_map = utils.read_map(args.outstanding_shares_path)
    tickers = ta_map.keys() & tl_map.keys() & p_map.keys() & s_map.keys()

    # intangible assets are 0 by default
    ia_map = dict()
    for t in tickers:
        ia_map[t] = 0.0
    ia_part = utils.read_map(args.intangible_assets_path)
    for k, v in ia_part.items():
        ia_map[k] = v

    with open(args.output_path, 'w') as fp:
        for ticker in sorted(tickers):
            output = ((ta_map[ticker] - ia_map[ticker] - tl_map[ticker]) /
                      s_map[ticker] / p_map[ticker])
            print('%s %f' % (ticker, output), file=fp)
Пример #4
0
    def test4(self):
        '''
        #######       #######
        #.E...#       #.....#
        #.#..G#       #.#G..#   G(200)
        #.###.#  -->  #.###.#
        #E#G#G#       #.#.#.#
        #...#G#       #G.G#G#   G(98), G(38), G(200)
        #######       #######

        Combat ends after 54 full rounds
        Goblins win with 536 total hit points left
        Outcome: 54 * 536 = 28944
        '''
        initial_data = '''
        #######
        #.E...#
        #.#..G#
        #.###.#
        #E#G#G#
        #...#G#
        #######
        '''
        m, p, w = read_map(initial_data.split('\n')[1:-1])
        game = Game(m, w, p)
        step, score = game.combat()
        print(step, game)
        game.display()
        self.assertEqual(step, 54)
        self.assertEqual(score, 28944)
Пример #5
0
    def test3(self):
        '''
        #######       #######
        #E.G#.#       #G.G#.#   G(200), G(98)
        #.#G..#       #.#G..#   G(200)
        #G.#.G#  -->  #..#..#
        #G..#.#       #...#G#   G(95)
        #...E.#       #...G.#   G(200)
        #######       #######

        Combat ends after 35 full rounds
        Goblins win with 793 total hit points left
        Outcome: 35 * 793 = 27755
        '''
        initial_data = '''
        #######
        #E.G#.#
        #.#G..#
        #G.#.G#
        #G..#.#
        #...E.#
        #######
        '''
        m, p, w = read_map(initial_data.split('\n')[1:-1])
        game = Game(m, w, p)
        step, score = game.combat()
        print(step, game)
        game.display()
        self.assertEqual(step, 35)
        self.assertEqual(score, 27755)
Пример #6
0
    def test2(self):
        '''
        #######       #######
        #E..EG#       #.E.E.#   E(164), E(197)
        #.#G.E#       #.#E..#   E(200)
        #E.##E#  -->  #E.##.#   E(98)
        #G..#.#       #.E.#.#   E(200)
        #..E#.#       #...#.#
        #######       #######

        Combat ends after 46 full rounds
        Elves win with 859 total hit points left
        Outcome: 46 * 859 = 39514
        '''
        initial_data = '''
        #######
        #E..EG#
        #.#G.E#
        #E.##E#
        #G..#.#
        #..E#.#
        #######
        '''
        m, p, w = read_map(initial_data.split('\n')[1:-1])
        game = Game(m, w, p)
        step, score = game.combat()
        print(step, game)
        game.display()
        self.assertEqual(step, 46)
        self.assertEqual(score, 39514)
Пример #7
0
    def test1(self):
        '''
        #######       #######
        #G..#E#       #...#E#   E(200)
        #E#E.E#       #E#...#   E(197)
        #G.##.#  -->  #.E##.#   E(185)
        #...#E#       #E..#E#   E(200), E(200)
        #...E.#       #.....#
        #######       #######

        Combat ends after 37 full rounds
        Elves win with 982 total hit points left
        Outcome: 37 * 982 = 36334
        '''
        initial_data = '''
        #######
        #G..#E#
        #E#E.E#
        #G.##.#
        #...#E#
        #...E.#
        #######
        '''
        m, p, w = read_map(initial_data.split('\n')[1:-1])
        game = Game(m, w, p)
        step, score = game.combat()
        print(step, game)
        game.display()
        self.assertEqual(step, 37)
        self.assertEqual(score, 36334)
Пример #8
0
    def test27(self):
        '''
        #######
        #G....#   G(200)
        #.G...#   G(131)
        #.#.#G#   G(119)
        #...#E#   E(119)
        #...G.#   G(200)
        #######
        '''
        m, p, w = read_map(test_data_battle)
        game = Game(m, w, p)
        for step in range(27):
            print(step)
            game.step()
        game.display()
        print(game)

        self.assertEqual(len(game.players), 5)
        self.assertEqual(game.players[0].hit_point, 200)
        self.assertEqual(game.players[1].hit_point, 131)
        self.assertEqual(game.players[2].hit_point, 119)
        self.assertEqual(game.players[3].hit_point, 119)
        self.assertEqual(game.players[4].hit_point, 200)
        self.assertFalse(game.done())
Пример #9
0
    def test_find_in_range2(self):
        """
        Targets:      In range:     Reachable:    Nearest:      Chosen:
        #######       #######       #######       #######       #######
        #E..G.#       #E.?G?#       #E.@G.#       #E.!G.#       #E.+G.#
        #...#.#  -->  #.?.#?#  -->  #.@.#.#  -->  #.!.#.#  -->  #...#.#
        #.G.#G#       #?G?#G#       #@G@#G#       #!G.#G#       #.G.#G#
        #######       #######       #######       #######       #######
        """
        map_, players, walls = read_map(test_data_chosen)

        player = players[1]
        player.find_in_range(walls, players)
        self.assertEqual(len(player.in_range), 2)
        self.assertListEqual(player.in_range, [(1, 3), (1, 5)])

        player = players[2]
        player.find_in_range(walls, players)
        self.assertEqual(len(player.in_range), 3)
        self.assertListEqual(player.in_range, [(2, 2), (3, 1), (3, 3)])

        player = players[3]
        player.find_in_range(walls, players)
        self.assertEqual(len(player.in_range), 1)
        self.assertListEqual(player.in_range, [(2, 5)])
def _parse_all_corpus(corpus_path: str, wn2bn: Dict[str, str]) -> None:
    """
    A method to parse all available corpus
    :param corpus_path: corpus folder path
    :param wn2bn: map Wordnet to Babelnet
    :return: None
    """
    for subdir, dirs, files in os.walk(str(corpus_path)):

        data_path, gold_path, parsed_path = "", "", ""

        for file in files:
            if file.endswith("data.xml"):
                data_path = os.path.join(subdir, file)
            elif file.endswith("gold.key.txt"):
                gold_path = os.path.join(subdir, file)

            # if the corpus is not parsed yet
            parsed_path = os.path.join(
                config.SENTENCES, file.split(".")[0] + "_sentences.txt"
            )
            if not os.path.isfile(parsed_path) and all(
                (path != "") for path in [data_path, gold_path]
            ):
                key_map = utils.read_map(gold_path, delimiter=" ")
                utils.write_sentences_and_labels(
                    parsed_path, parser_raganato_format(data_path, key_map, wn2bn)
                )
Пример #11
0
    def test5(self):
        '''
        #########       #########
        #G......#       #.G.....#   G(137)
        #.E.#...#       #G.G#...#   G(200), G(200)
        #..##..G#       #.G##...#   G(200)
        #...##..#  -->  #...##..#
        #...#...#       #.G.#...#   G(200)
        #.G...G.#       #.......#
        #.....G.#       #.......#
        #########       #########

        Combat ends after 20 full rounds
        Goblins win with 937 total hit points left
        Outcome: 20 * 937 = 18740
        '''
        initial_data = '''
        #########
        #G......#
        #.E.#...#
        #..##..G#
        #...##..#
        #...#...#
        #.G...G.#
        #.....G.#
        #########
        '''
        m, p, w = read_map(initial_data.split('\n')[1:-1])
        game = Game(m, w, p)
        step, score = game.combat()
        print(step, game)
        game.display()
        self.assertEqual(step, 20)
        self.assertEqual(score, 18740)
def preprocessing_domain(
    train_y: List[str],
    dev_y: List[str],
    dom_path: str,
    to_write: str,
    vocab: Dict[str, int],
    num_vocab: int,
    min_count: int,
    reverse: bool = False,
    bn: bool = True,
) -> Tuple[List[str], List[str], Dict[str, int], FreqDist]:
    """
    This method is used to preprocess the labels.

    :param train_y: the labels to preprocess
    :param dev_y: the dev labels to preprocess
    :param dom_path: the path which from read the conversion map
    :param to_write: the path to write the vocabulary
    :param vocab: training vocabulary
    :param num_vocab: maximum number of vocab
    :param min_count: min number of word occurrences
    :param reverse: if True, it reads domain2bn. False otherwise
    :param bn: if True is done the Babelnet preprocess. False coarse-grained
    :return:
        train_y = train_y preprocessed
        dev_y = dev_y preprocessed
        out_vocab = the sense-inventory
        frequency = word frequency
    """
    bn2domain = utils.read_map(dom_path, reverse=False)
    if not bn:
        train_y, dev_y = utils.domains_converters([train_y, dev_y], bn2domain)

    bn2domain = utils.read_map(dom_path, reverse=reverse)
    senses = utils.retrieve_senses(train_y, bn2domain, is_bn=bn)

    out_vocab, frequency = preprocesser.compute_vocabulary(senses,
                                                           min_count=min_count,
                                                           num_vocab=num_vocab,
                                                           vocab=vocab)

    train_y, dev_y = preprocesser.text2id_corpus(corpus=[train_y, dev_y],
                                                 vocab=out_vocab)

    utils.write_vocabulary(to_write, out_vocab)

    return train_y, dev_y, out_vocab, frequency
Пример #13
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--net_income_path', required=True)
    parser.add_argument('--total_equity_path', required=True)
    parser.add_argument('--output_path', required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()

    utils.setup_logging(args.verbose)

    ni_map = utils.read_map(args.net_income_path)
    e_map = utils.read_map(args.total_equity_path)
    tickers = ni_map.keys() & e_map.keys()

    with open(args.output_path, 'w') as fp:
        for ticker in sorted(tickers):
            output = ni_map[ticker] / e_map[ticker]
            print('%s %f' % (ticker, output), file=fp)
Пример #14
0
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--net_income_path', required=True)
  parser.add_argument('--total_equity_path', required=True)
  parser.add_argument('--output_path', required=True)
  parser.add_argument('--verbose', action='store_true')
  args = parser.parse_args()

  utils.setup_logging(args.verbose)

  ni_map = utils.read_map(args.net_income_path)
  e_map = utils.read_map(args.total_equity_path)
  tickers = ni_map.keys() & e_map.keys()

  with open(args.output_path, 'w') as fp:
    for ticker in sorted(tickers):
      output = ni_map[ticker] / e_map[ticker]
      print('%s %f' % (ticker, output), file=fp)
Пример #15
0
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--prices_path', required=True)
  parser.add_argument('--outstanding_shares_path', required=True)
  parser.add_argument('--output_path', required=True)
  parser.add_argument('--verbose', action='store_true')
  args = parser.parse_args()

  utils.setup_logging(args.verbose)

  p_map = utils.read_map(args.prices_path)
  s_map = utils.read_map(args.outstanding_shares_path)
  tickers = p_map.keys() & s_map.keys()

  with open(args.output_path, 'w') as fp:
    for ticker in sorted(tickers):
      output = p_map[ticker] * s_map[ticker]
      print('%s %f' % (ticker, output), file=fp)
def parse_all():
    """
    A simple method used to handle both the corpus and the test sets
    :return: None
    """
    wn2bn = utils.read_map(config.BABELNET2WORDNET_TR, reverse=True)

    _parse_all_corpus(config.TEST_SETS, wn2bn)
    _parse_all_corpus(config.TRAINING_SETS, wn2bn)
Пример #17
0
    def test_find_in_range(self):
        map_, players, walls = read_map(test_data)

        player = players[1]
        player.find_in_range(walls, players)
        self.assertListEqual(player.in_range, [(1, 3), (1, 5), (2, 4)])

        player = players[3]
        player.find_in_range(walls, players)
        self.assertListEqual(player.in_range, [(1, 3), (2, 2), (2, 4), (3, 3)])
Пример #18
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--trading_volumes_path', required=True)
    parser.add_argument('--prices_path', required=True)
    parser.add_argument('--outstanding_shares_path', required=True)
    parser.add_argument('--output_path', required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()

    utils.setup_logging(args.verbose)

    tv_map = utils.read_map(args.trading_volumes_path)
    p_map = utils.read_map(args.prices_path)
    s_map = utils.read_map(args.outstanding_shares_path)
    tickers = tv_map.keys() & p_map.keys() & s_map.keys()

    with open(args.output_path, 'w') as fp:
        for ticker in sorted(tickers):
            output = tv_map[ticker] / (p_map[ticker] * s_map[ticker])
            print('%s %f' % (ticker, output), file=fp)
Пример #19
0
    def test_adjacent(self):
        """
        all players always have 4 adjacent cells which doesn't me they are reachable
        """
        map_, players, walls = read_map(test_data)

        player = players[1]
        print(player)
        self.assertEqual(len(player.adjacent), 4)

        player = players[3]
        self.assertEqual(len(player.adjacent), 4)
Пример #20
0
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--scores_path', required=True)
  parser.add_argument('--prices_path', required=True)
  parser.add_argument('--mc_path', required=True)
  parser.add_argument('--output_path', required=True)
  parser.add_argument('--verbose', action='store_true')
  args = parser.parse_args()

  utils.setup_logging(args.verbose)

  s_map = utils.read_map(args.scores_path)
  p_map = utils.read_map(args.prices_path)
  mc_map = utils.read_map(args.mc_path)
  tickers = s_map.keys() & p_map.keys() & mc_map.keys()

  with open(args.output_path, 'w') as fp:
    for ticker in sorted(tickers):
      if p_map[ticker] < MIN_PRICE: continue
      if mc_map[ticker] < MIN_MC: continue
      print('%s %f' % (ticker, s_map[ticker]), file=fp)
Пример #21
0
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--er1_path', required=True)
  parser.add_argument('--er12_path', required=True)
  parser.add_argument('--tv2mc_path', required=True)
  parser.add_argument('--er2_path', required=True)
  parser.add_argument('--e2p_path', required=True)
  parser.add_argument('--roe_path', required=True)
  parser.add_argument('--b2p_path', required=True)
  parser.add_argument('--er6_path', required=True)
  parser.add_argument('--cf2p_path', required=True)
  parser.add_argument('--output_path', required=True)
  parser.add_argument('--verbose', action='store_true')
  args = parser.parse_args()

  utils.setup_logging(args.verbose)

  er1_map = utils.read_map(args.er1_path)
  er12_map = utils.read_map(args.er12_path)
  tv2mc_map = utils.read_map(args.tv2mc_path)
  er2_map = utils.read_map(args.er2_path)
  e2p_map = utils.read_map(args.e2p_path)
  roe_map = utils.read_map(args.roe_path)
  b2p_map = utils.read_map(args.b2p_path)
  er6_map = utils.read_map(args.er6_path)
  cf2p_map = utils.read_map(args.cf2p_path)
  tickers = (er1_map.keys() & er12_map.keys() & tv2mc_map.keys()
             & er2_map.keys() & e2p_map.keys() & roe_map.keys()
             & b2p_map.keys() & er6_map.keys() & cf2p_map.keys())
  logging.info('%d tickers' % len(tickers))
  logging.info('total weight: %f' %
      (ER1 + ER12 + TV2MC + ER2 + E2P + ROE + B2P + ER6 + CF2P))

  with open(args.output_path, 'w') as fp:
    for t in sorted(tickers):
      score = (er1_map[t] * ER1
               + er12_map[t] * ER12
               + tv2mc_map[t] * TV2MC
               + er2_map[t] * ER2
               + e2p_map[t] * E2P
               + roe_map[t] * ROE
               + b2p_map[t] * B2P
               + er6_map[t] * ER6
               + cf2p_map[t] * CF2P) / 100  # accounting for %
      print('%s %f' % (t, score), file=fp)
Пример #22
0
    def test_distance(self):
        """
        Targets:      In range:     Reachable:    Nearest:      Chosen:
        #######       #######       #######       #######       #######
        #E..G.#       #E.?G?#       #E.@G.#       #E.!G.#       #E.+G.#
        #...#.#  -->  #.?.#?#  -->  #.@.#.#  -->  #.!.#.#  -->  #...#.#
        #.G.#G#       #?G?#G#       #@G@#G#       #!G.#G#       #.G.#G#
        #######       #######       #######       #######       #######
        """
        map_, players, walls = read_map(test_data_chosen)

        player = players[0]
        distance = player.calculate_reachable_bfs(map_, walls, players)
        print(distance)
Пример #23
0
    def test_step(self):
        """
        In range:     Nearest:      Chosen:       Distance:     Step:
        #######       #######       #######       #######       #######
        #.E...#       #.E...#       #.E...#       #4E212#       #..E..#
        #...?.#  -->  #...!.#  -->  #...+.#  -->  #32101#  -->  #.....#
        #..?G?#       #..!G.#       #...G.#       #432G2#       #...G.#
        #######       #######       #######       #######       #######
        """
        map_, players, walls = read_map(test_data_step)

        player = players[0]
        distances = player.step(map_, walls, players)
        print(distances)
        self.assertEqual(player.position, (1, 3))
Пример #24
0
    def test_chosen(self):
        """
        Targets:      In range:     Reachable:    Nearest:      Chosen:
        #######       #######       #######       #######       #######
        #E..G.#       #E.?G?#       #E.@G.#       #E.!G.#       #E.+G.#
        #...#.#  -->  #.?.#?#  -->  #.@.#.#  -->  #.!.#.#  -->  #...#.#
        #.G.#G#       #?G?#G#       #@G@#G#       #!G.#G#       #.G.#G#
        #######       #######       #######       #######       #######
        """
        map_, players, walls = read_map(test_data_chosen)

        player = players[0]
        distance, chosen = player.chosen(map_, walls, players)
        self.assertEqual(distance, 2)
        self.assertEqual(chosen, (1, 3))
Пример #25
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--er1_path', required=True)
    parser.add_argument('--er12_path', required=True)
    parser.add_argument('--tv2mc_path', required=True)
    parser.add_argument('--er2_path', required=True)
    parser.add_argument('--e2p_path', required=True)
    parser.add_argument('--roe_path', required=True)
    parser.add_argument('--b2p_path', required=True)
    parser.add_argument('--er6_path', required=True)
    parser.add_argument('--cf2p_path', required=True)
    parser.add_argument('--output_path', required=True)
    parser.add_argument('--verbose', action='store_true')
    args = parser.parse_args()

    utils.setup_logging(args.verbose)

    er1_map = utils.read_map(args.er1_path)
    er12_map = utils.read_map(args.er12_path)
    tv2mc_map = utils.read_map(args.tv2mc_path)
    er2_map = utils.read_map(args.er2_path)
    e2p_map = utils.read_map(args.e2p_path)
    roe_map = utils.read_map(args.roe_path)
    b2p_map = utils.read_map(args.b2p_path)
    er6_map = utils.read_map(args.er6_path)
    cf2p_map = utils.read_map(args.cf2p_path)
    tickers = (er1_map.keys() & er12_map.keys() & tv2mc_map.keys()
               & er2_map.keys() & e2p_map.keys() & roe_map.keys()
               & b2p_map.keys() & er6_map.keys() & cf2p_map.keys())
    logging.info('%d tickers' % len(tickers))
    logging.info('total weight: %f' %
                 (ER1 + ER12 + TV2MC + ER2 + E2P + ROE + B2P + ER6 + CF2P))

    with open(args.output_path, 'w') as fp:
        for t in sorted(tickers):
            score = (er1_map[t] * ER1 + er12_map[t] * ER12 +
                     tv2mc_map[t] * TV2MC + er2_map[t] * ER2 + e2p_map[t] * E2P
                     + roe_map[t] * ROE + b2p_map[t] * B2P + er6_map[t] * ER6 +
                     cf2p_map[t] * CF2P) / 100  # accounting for %
            print('%s %f' % (t, score), file=fp)
Пример #26
0
    def test1(self):
        test_data = '''
        #######
        #.G.E.#
        #E.G.E#
        #.G.E.#
        #######
        '''
        test_data = test_data.split('\n')[1:-1]
        map_, players, walls = read_map(test_data)

        self.assertEqual(map_[0][0], '#')
        self.assertEqual(map_[1][2], 'G')
        self.assertEqual(map_[2][5], 'E')

        self.assertEqual(len(players), 7)

        self.assertEqual(players[5].type_, 'G')
        self.assertEqual(players[5].position, (3,2))

        self.assertEqual(players[1].type_, 'E')
        self.assertEqual(players[1].position, (1,4))
Пример #27
0
    def test2(self):
        '''
        #######
        #...G.#   G(200)
        #..GEG#   G(200), E(188), G(194)
        #.#.#G#   G(194)
        #...#E#   E(194)
        #.....#
        #######
        '''
        m, p, w = read_map(test_data_battle)
        game = Game(m, w, p)
        for _ in range(2):
            game.step()
        game.display()
        print(game)

        self.assertEqual(game.players[0].hit_point, 200)
        self.assertEqual(game.players[1].hit_point, 200)
        self.assertEqual(game.players[2].hit_point, 188)
        self.assertEqual(game.players[3].hit_point, 194)
        self.assertEqual(game.players[4].hit_point, 194)
        self.assertEqual(game.players[5].hit_point, 194)
Пример #28
0
def predict_babelnet(input_path: str, output_path: str,
                     resources_path: str) -> None:
    """
    DO NOT MODIFY THE SIGNATURE!
    This is the skeleton of the prediction function.
    The predict function will build your model, load the weights from the checkpoint and write a new file (output_path)
    with your predictions in the "<id> <BABELSynset>" format (e.g. "d000.s000.t000 bn:01234567n").

    The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission.

    N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code.
    If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding

    :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded).
    :param output_path: the path of the output file (where you save your predictions)
    :param resources_path: the path of the resources folder containing your model and stuff you might need.
    :return: None
    """
    print("Predicting Babelnet...")
    out_vocab = utils.read_vocabulary(
        os.path.join(resources_path, config.OUT_VOCAB_BN))
    bn2wn = utils.read_map(os.path.join(resources_path,
                                        config.BABELNET2WORDNET),
                           reverse=False)

    dense_layer = 0
    is_bn = True

    _prediction(
        input_path,
        output_path,
        resources_path,
        out_vocab,
        dense_layer,
        is_bn,
        bn2domain=bn2wn,
    )
Пример #29
0
    def test23(self):
        '''
        After 23 rounds:
        #######
        #...G.#   G(200)
        #..G.G#   G(200), G(131)
        #.#.#G#   G(131)
        #...#E#   E(131)
        #.....#
        #######
        '''
        m, p, w = read_map(test_data_battle)
        game = Game(m, w, p)
        for _ in range(23):
            game.step()
        game.display()
        print(game)

        self.assertEqual(len(game.players), 5)
        self.assertEqual(game.players[0].hit_point, 200)
        self.assertEqual(game.players[1].hit_point, 200)
        self.assertEqual(game.players[2].hit_point, 131)
        self.assertEqual(game.players[3].hit_point, 131)
        self.assertEqual(game.players[4].hit_point, 131)
Пример #30
0
def main():
    #read list
    li = utils.read_arg_list_all(sys.argv[1])

    #read map
    map = utils.read_map(sys.argv[2])
    #read check_match
    match = utils.read_check_match(sys.argv[3])
    if(sys.argv[4] == "truseq"):
        print 'gene\torg\ttruseq_f\ttruseq_r\texpected_length'
    else:
        print 'gene\torg\tconventional_pcr_f\tconventional_pcr_r\texpected_length'
    for x in li:
        gene = x[0]
    
        if(len(x) == 2):
            target1 = x[1]
            show_list(gene,target1,map,match)
            
        else:
            target1 = x[1]
            target2 = x[2]
            show_list(gene,target1,map,match)
            show_list(gene,target2,map,match)
Пример #31
0
def main():
  parser = argparse.ArgumentParser()
  parser.add_argument('--current_prices_path', required=True)
  parser.add_argument('--future_prices_path', required=True)
  parser.add_argument('--scores_path', required=True)
  parser.add_argument('--verbose', action='store_true')
  args = parser.parse_args()

  utils.setup_logging(args.verbose)

  cp_map = utils.read_map(args.current_prices_path)
  fp_map = utils.read_map(args.future_prices_path)
  s_map = utils.read_map(args.scores_path)
  tickers = cp_map.keys() & fp_map.keys() & s_map.keys()

  logging.info('%d tickers in this test' % len(tickers))
  scores = s_map.values()
  maxs, mins, means = max(scores), min(scores), sum(scores)/len(scores)
  logging.info('max score = %f, min score = %f, mean score = %f' %
      (maxs, mins, means))

  r_map = dict()
  for t in tickers:
    r_map[t] = (fp_map[t] - cp_map[t]) / (cp_map[t] + 0.01)  # avoid div-by-0

  ups, rups, corrects = 0, 0, 0
  for t in tickers:
    if (s_map[t] > 0) == (r_map[t] > 0):
      corrects += 1
    if s_map[t] > 0:
      ups += 1
    if r_map[t] > 0:
      rups += 1
  logging.info('%d of %d are predicted to go up' % (ups, len(tickers)))
  logging.info('%d of %d did go up' % (rups, len(tickers)))
  logging.info('%d of %d correct signs (%.2f%%)'
      % (corrects, len(tickers), 100.0 * corrects / len(tickers)))

  rs = [(t, s) for t, s in s_map.items()]
  rs.sort(key=lambda x: x[1])
  bucket_size = int(len(tickers) / K)
  for i in range(K):
    f = i * bucket_size
    t = f + bucket_size
    if i == K - 1: t = len(tickers)

    meanr, count = 0.0, 0
    for j in range(f, t):
      r = r_map[rs[j][0]]
      meanr += r
      count += 1
    meanr /= count
    logging.info('decile %d: %d stocks, mean return = %.2f%%'
        % (i+1, count, meanr * 100))
  tr = compute_return(rs, r_map, T)
  br = compute_return(rs, r_map, B)
  logging.info('Mean return for top %s is %s' % (T, tr))
  logging.info('Mean return for bot %s is %s' % (B, br))

  rss = [(p[0], p[1], r_map[p[0]]) for p in rs]
  rss.sort(key=lambda x: x[2])
  logging.info('Top 10 gains: %s, average: %f'
      % ([x[2] for x in rss[-10:]], sum([x[2] for x in rss[-10:]])/10))
  logging.info('Top 10 scores: %s, average: %f'
      % ([x[1] for x in rss[-10:]], sum([x[1] for x in rss[-10:]])/10))
  logging.info('Bot 10 gains: %s, average: %f'
      % ([x[2] for x in rss[:10]], sum([x[2] for x in rss[:10]])/10))
  logging.info('Bot 10 scores: %s, average: %f'
      % ([x[1] for x in rss[:10]], sum([x[1] for x in rss[:10]])/10))
Пример #32
0
def _prediction(
    input_path: str,
    output_path: str,
    resources_path: str,
    out_vocab: Dict,
    i_dense: int,
    is_bn: bool,
    bn2domain: Dict = None,
) -> None:
    """
    This method is used to handle the prediction of a task
    :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded).
    :param output_path: the path of the output file (where you save your predictions)
    :param resources_path: the path of the resources folder containing your model and stuff you might need.
    :param out_vocab: sense inventory
    :param i_dense: i-esime fully connected layer:
                    0 -> Babelnet
                    1 -> Wordnet domains
                    2 -> Lexicographer
    :param is_bn: if True, predicts Babelnet
    :param bn2domain: a map Babelnet to domain
    :return: None
    """
    config_tf = tf.ConfigProto()
    config_tf.gpu_options.allow_growth = True
    tf.keras.backend.set_session(tf.Session(config=config_tf))

    test_set = parser.parser_test_set(input_path)

    vocab = utils.read_vocabulary(os.path.join(resources_path, config.VOCAB))
    wn2bn = utils.read_map(os.path.join(resources_path,
                                        config.BABELNET2WORDNET),
                           reverse=True)

    out_vocab_bn = utils.read_vocabulary(
        os.path.join(resources_path, config.OUT_VOCAB_BN))
    out_vocab_wnd = utils.read_vocabulary(
        os.path.join(resources_path, config.OUT_VOCAB_WND))
    out_vocab_lex = utils.read_vocabulary(
        os.path.join(resources_path, config.OUT_VOCAB_LEX))
    out_vocab_pos = utils.read_vocabulary(
        os.path.join(resources_path, config.POS_VOCAB))

    pre_trained = gensim.models.KeyedVectors.load_word2vec_format(os.path.join(
        resources_path, config.SQUEEZED_EMB),
                                                                  binary=True)

    print("Downloading ELMo...")
    model = models.build_model(
        vocab_size=len(vocab),
        out_size_bn=len(out_vocab_bn),
        out_size_wnd=len(out_vocab_wnd),
        out_size_lex=len(out_vocab_lex),
        out_size_pos=len(out_vocab_pos),
        word2vec=pre_trained,
        is_elmo=config.IS_ELMO,
        attention=config.ATTENTION,
        is_sense_emb=config.SENSE_EMB,
    )

    reversed_vocab = utils.reverse_vocab(out_vocab_bn)
    model.load_weights(str(os.path.join(resources_path, config.MODEL_WEIGHTS)))

    with open(str(output_path), mode="w") as file:
        for row in tqdm(test_set):

            if not config.IS_ELMO:
                tmp = preprocesser.text2id([row[0]], vocab)
            else:
                tmp = np.array([row[0]])

            tmp_row = list(row[2])

            inp = tmp
            if config.SENSE_EMB:
                sens_emb = np.ones((1, len(inp[0].split())), dtype=int)
                inp_pos = np.array([row[1]])
                inp = [inp, sens_emb, inp_pos]

            predictions = model.predict(inp, verbose=0)[i_dense]

            for senses in tmp_row:

                sense_position = utils.senses_position_from_vocab(
                    senses["lemma"], out_vocab_bn, bn2domain)

                synsets = [reversed_vocab[x] for x in sense_position]

                if not is_bn:
                    synsets = [
                        bn2domain.get(syn.split("_")[-1]) for syn in synsets
                    ]
                    sense_position = [out_vocab[syn] for syn in synsets]

                to_compute = np.array([
                    predictions[0][senses["position"]][sen_pos]
                    for sen_pos in sense_position
                ])

                if len(to_compute) != 0:
                    file.write(senses["id"] + " " +
                               synsets[to_compute.argmax()].split("_")[-1] +
                               "\n")
                else:
                    file.write(senses["id"] + " " + utils.most_frequent_sense(
                        senses["lemma"],
                        senses["pos"],
                        wn2bn,
                        bn2domain=bn2domain,
                        is_bn=is_bn,
                    ) + "\n")
Пример #33
0
#this script match map file and blast result
#output: organism, locus, ARG name
#python match_map_blast.py mapfile blastfile > output.txt

import sys
import utils

map = utils.read_map(sys.argv[1])

for line in open(sys.argv[2],'r'):
    spl = line.strip().split('\t')
    arg = spl[1].split('|')
    ar = arg[len(arg)-1]
    if(map.has_key(spl[0])):
        result = [ map[spl[0]], spl[0], ar]
        print '\t'.join(result)
Пример #34
0
#!/usr/bin/env python

from __future__ import print_function

from utils import read_map
from game import Game

if __name__ == '__main__':
    with open('data.txt', 'r') as f:
        m, p, w = read_map(f)
        game = Game(m, w, p)
        step, score = game.combat(5000)
        print(score)
        # 208413 too low
        # 210843 too low