Пример #1
0
def final_to_pca(in_path, out_path):
    # action=td.read_im_action(in_path+"/")
    action = utils.read_object(in_path)
    out_path = out_path.replace(".final", ".pca")
    pca = action.to_pca()
    eigen = td.to_time_serie(pca)
    img = td.to_img(eigen)
    utils.save_img(out_path, img)
Пример #2
0
def main(args):
    """Executes training job."""
    # Load data into a pandas DataFrame.
    df = read_object(args.input_path, file_type="json").sample(frac=1.)
    if args.max_data_rows:
        df = df.iloc[:args.max_data_rows].copy()
    print(f"Data contains {len(df)} rows")
    # Preprocess and featurize data.
    traindf, validdf = preprocess_data(df)
    # Create data set for model input.
    train_dataset = AmazonReviewDataset(traindf, args.model_name,
                                        args.max_sequence_length)
    valid_dataset = AmazonReviewDataset(validdf, args.model_name,
                                        args.max_sequence_length)
    print(train_dataset[0])
    # Define model and trainer.
    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_name, num_labels=2, torchscript=True)
    training_args = TrainingArguments(
        output_dir=os.path.join(args.model_dir, "results"),
        num_train_epochs=args.epochs,
        per_device_train_batch_size=args.train_batch_size,
        per_device_eval_batch_size=args.valid_batch_size,
        learning_rate=args.learning_rate,
        adam_epsilon=args.adam_epsilon,
        warmup_steps=500,
        weight_decay=args.weight_decay,
        logging_dir=os.path.join(args.model_dir, "logs"),
        logging_steps=10,
        evaluation_strategy="steps",
        load_best_model_at_end=True)
    trainer = Trainer(model=model,
                      args=training_args,
                      train_dataset=train_dataset,
                      eval_dataset=valid_dataset,
                      compute_metrics=compute_metrics)
    # Train the model.
    trainer.train()
    trainer.evaluate()
    # Save the model to the output_path defined in train_model.py.
    device = torch.device("cuda")
    dummy_row = train_dataset[0]
    dummy_input = (dummy_row["input_ids"].unsqueeze(0).to(device),
                   dummy_row["attention_mask"].unsqueeze(0).to(device))
    traced_model = torch.jit.trace(model, dummy_input)
    torch.jit.save(traced_model, os.path.join(args.model_dir, "model.pth"))
Пример #3
0
    def _run_event_loop(self):
        while True:
            canvas, green_player, blue_player = read_object(self.client)
            pygame.surfarray.pixels3d(self.canvas)[:, :] = canvas

            if green_player and blue_player:
                pygame.draw.rect(
                    self.canvas, THECOLORS["green"],
                    pygame.Rect(green_player.x * 5, green_player.y * 5 + 60,
                                15, 15))
                pygame.draw.rect(
                    self.canvas, THECOLORS["blue"],
                    pygame.Rect(blue_player.x * 5, blue_player.y * 5 + 60, 15,
                                15))

            if pygame.event.get(
                    eventtype=QUIT) or pygame.key.get_pressed()[K_ESCAPE]:
                return
            self._process_keyboard_events()

            pygame.display.flip()
            self.clock.tick(30)
Пример #4
0
def read_composite(cls_path):
    model=utils.read_object(cls_path)
    rand=deep.RandomNum()
    ae=autoencoder.init_autoencoder(model.ae_model,rand)
    cls_nn=nn.init_nn(5,model.nn_model)
    return FeatureExtractor(ae,cls_nn)
Пример #5
0
from utils import read_object, save_object
from main import PARTICIPANT
from hashing_engine import encrypt, decrypt
import datetime
import pytz

utc = pytz.timezone('UTC')

DATA_PATH = "data/participants.pkl"
participants = read_object(DATA_PATH)

user_email = input("Please enter the user email you want to delete: ")

users_hids = []
for participant in participants.values():

    if participant.hashed_email == encrypt(
            user_email) and participant.unsubscribe == False:
        users_hids.append(participant.hashed_subject_id)

string_hids = f"\n".join([x.decode("utf-8") for x in users_hids])
print(
    f'Found {len(users_hids)} ids subcribed with that email here is the list:\n{string_hids}'
)

user_to_unsubscribe = input(
    "Type the item number of appearance corresponding to the sID /!\ start with 0, or type any letter to do thing: "
)

if user_to_unsubscribe.isdigit():
    indice = int(user_to_unsubscribe)
def fetch_update_participants():

    if os.path.exists(DATA_PATH):
        participants = read_object(DATA_PATH)
    else:
        participants = {}

    qualtrics.main(
        logger
    )  #fetching the surveys from qualtrics and putting it in the TEMP_QUALTRICS_DATA path

    surveys = pandas.read_csv(
        TEMP_QUALTRICS_DATA
    )  # reading the downloaded survey from the TEMP_QUALTRICS_DATA
    surveys = surveys.loc[2:]  # only take data from row 2
    surveys = surveys[surveys['Finished'] ==
                      '1']  # only consider surveys which are completed
    surveys = surveys[surveys['Q1'] == "I agree."]

    for index, response in surveys.iterrows():

        esID = encrypt(response['id'])

        if esID not in list(participants.keys()):

            enrollment_date = datetime.datetime.strptime(
                response['EndDate'], "%Y-%m-%d %H:%M:%S")
            localtz = pytz.timezone(response.get(key='INATZ', default='UTC'))

            participants[esID] = PARTICIPANT(
                enrollment_date, esID, encrypt(response['Q21']),
                response['INATZ'],
                response.get(key='population', default='control'))
            participant_df.loc[esID.decode("utf-8"),
                               str(enrollment_date.date())] = "ENROLLED"

        else:
            participant = participants[esID]
            participants[esID] = PARTICIPANT(
                participant.enrollment_date, participant.hashed_subject_id,
                participant.hashed_email, participant.time_zone,
                getattr(participant, "population", "test"))
            refreshed_participant = participants[esID]

            refreshed_participant.last_daily_date = participant.last_daily_date
            refreshed_participant.last_weekly_date = participant.last_weekly_date
            refreshed_participant.nb_sent_daily = participant.nb_sent_daily
            refreshed_participant.nb_sent_weekly = participant.nb_sent_weekly

            refreshed_participant.unsubscribe = getattr(
                participant, "unsubscribe", False)
            refreshed_participant.unsubscribe_dt = getattr(
                participant, "unsubscribe_dt", None)
            refreshed_participant.unsubscribe_email_sent = getattr(
                participant, "unsubscribe_email_sent", False)
            refreshed_participant.unsubscribe_email_dt = getattr(
                participant, "unsubscribe_email_dt", None)

            participant_df.loc[
                esID.decode("utf-8"),
                str(participant.enrollment_date.date())] = "ENROLLED"

            # updating the participant object, in case (in the code) we actually update the participant object.

    save_object(participants, DATA_PATH)

    if os.path.exists(TEMP_QUALTRICS_DATA):
        os.remove(TEMP_QUALTRICS_DATA)
    else:
        logger.error(
            "Cannot delete qualtrics data because the file does not exits")

    return participants
Пример #7
0
def make_action(raw_action_path):
	raw_action=utils.read_object(raw_action_path)
	p_clouds=[create_point_cloud(img) for img in raw_action.frames]
	return Action(p_clouds)
Пример #8
0
def feat_imgs(in_path, out_path):
    action = utils.read_object(in_path)
    sd = action.features()
    sd_ts = td.to_time_serie(sd)
    print(out_path)
    td.visualize(out_path, sd_ts)
Пример #9
0
def skew_imgs(in_path, out_path):
    action = utils.read_object(in_path)
    skew = action.skew()
    skew_ts = td.to_time_serie(skew)
    print(out_path)
    td.visualize(out_path, skew_ts)
Пример #10
0
def pcloud_to_img(in_path, out_path):
    pcloud_action = utils.read_object(in_path)
    out_path = out_path.replace(".cloud", ".img/")
    print(out_path)
    pcloud_action.save_projection(out_path)
Пример #11
0
def read_sda(sda_path,conf_path):
    model=utils.read_object(sda_path)
    free_vars=deep.LabeledImages()
    hyper_params=tools.read_hyper_params(conf_path)
    train,test,prob_dist=create_nn_fun(free_vars,model,hyper_params)
    return deep.Classifier(free_vars,model,train,test,prob_dist)
Пример #12
0
def create_seq_dataset(action_dir,cls_path):
    cls=utils.read_object(cls_path)
    actions=get_actions(action_dir,cls)
Пример #13
0
def read_autoencoder(cls_path):
    hyper_params=get_hyper_params()
    model=utils.read_object(cls_path)
    rand=deep.RandomNum()
    return init_autoencoder(model,rand)
Пример #14
0
 def __init__(self,path):
     self.clusters=utils.read_object(path)