def demo_videos(): """ Demo of dm_tracker on imagenet videos """ args = parse_args() np.random.seed(args.seed) vidDir = '/home/dpathak/local/data/trash/videos' imDir = vidDir + '_im' vidPathList = utils.read_r(vidDir, '*.mp4') # vidPathList = vidPathList[5:] utils.mkdir_p(imDir) for i in range(len(vidPathList)): print('Video: ', vidPathList[i]) tmpDir = imDir + '/' + vidPathList[i].split('/')[-1][:-4] utils.mkdir_p(tmpDir) # imSeq = utils.vid2im(vidPathList[i]) # assert imSeq.size > 0, "Error reading video file" # for j in range(imSeq.shape[0]): # Image.fromarray(imSeq[j]).save(tmpDir + '/frame_%05d.jpg' % j) imPathList = utils.read_r(tmpDir, '*.jpg') if len(imPathList) < 2: print('Not enough images in image directory: \n%s' % tmpDir) print('Continuing to next one ...') continue outdir = tmpDir.split('/') outdir[-2] = outdir[-2][:-3] + '_result' outdir = '/'.join(outdir) run_dm_sequence(outdir, imPathList, args.frameGap, args.dmThresh, args.matchNbr, args.shotFrac, args.postTrackHomTh, args.preTrackHomTh, args.use_epic, args.vizFlow, args.vizTr, args.cpysrc)
def demo_imagenet(): """ Demo of dm_tracker on imagenet videos """ args = parse_args() np.random.seed(args.seed) if args.imdir == '': imagenetVideoList = '/mnt/vol/gfsai-local/ai-group/users/bharathh/' + \ 'imagenet_videos/ILSVRC2015/ImageSets/VID/' + \ 'train_10.txt' imagenetRoot = '/mnt/vol/gfsai-local/ai-group/users/bharathh/' + \ 'imagenet_videos/ILSVRC2015/Data/VID/train/' with open(imagenetVideoList, 'r') as f: lines = f.readlines() imdirs = [x.strip().split(' ')[0] for x in lines] imdirs = imdirs[np.random.randint(len(imdirs))] args.imdir = os.path.join(imagenetRoot, imdirs) args.outdir = os.path.join(args.outdir, imdirs) # read image files imPathList = utils.read_r(args.imdir, '*.*') if len(imPathList) < 2: print('Not enough images in image directory: \n%s' % args.imdir) return # run deep match tracker run_dm_sequence(args.outdir, imPathList, args.frameGap, args.dmThresh, args.matchNbr, args.shotFrac, args.postTrackHomTh, args.preTrackHomTh, args.use_epic, args.vizFlow, args.vizTr, args.cpysrc)
def run_epicFlow_sequence(imPathList, flowdir, deepmatchdir, vizFlow=False): """ Run EpicFlow Code on a sequence of images of video to obtain tracks. To be run after epic flow code. """ fList = [] if os.path.isdir(flowdir): fList = utils.read_r(flowdir, '*.flo') if not len(fList) == len(imPathList) - 1 or len(fList) == 0: utils.mkdir_p(flowdir) if vizFlow: utils.mkdir_p(flowdir + '/viz_flow/') for i in range(len(imPathList) - 1): deepmatchfile = deepmatchdir + 'match_%04d.txt' % i run_epicFlow_pair(imPathList[i], imPathList[i + 1], flowdir, deepmatchfile, i, vizFlow) sys.stdout.write('Pairwise EpicFlow: [% 5.1f%%]\r' % (100.0 * float(i / len(imPathList)))) sys.stdout.flush() if vizFlow: import subprocess subprocess.call([ 'tar', '-zcf', flowdir + '/viz_flow.tar.gz', '-C', flowdir + '/viz_flow', '.' ]) print('Pairwise EpicFlow completed.') else: print('Pairwise EpicFlows already present in outdir. Using them.')
def run_pre_homography(outdir, matchdir, homTh, imH, imW, dmThresh, imPathList, vizHomo): """ Run per frame homogrpahy on matching files of deepmatch or epic flow """ if homTh < 0: return utils.rmdir_f(outdir) utils.mkdir_p(outdir) mList = utils.read_r(matchdir, '*.txt') if vizHomo: col = np.array([255, 0, 0], dtype='int') utils.mkdir_p(outdir + '/viz_homo/') for i in range(len(mList)): matches = read_dmOutput(mList[i], imH, imW, dmThresh, False) matches = frame_homography(matches, homTh) # fit to coordinates to image size matches = np.minimum(matches, np.array([imW, imH, imW, imH]) - 1) matches = np.maximum(matches, np.array([0])) matchfile = outdir + 'match_%04d.txt' % i np.savetxt(matchfile, matches, fmt='%d') if matches.size > 0 and vizHomo: im = np.array(Image.open(imPathList[i])) im = Image.fromarray( utils.draw_point_im(im, matches[:, [1, 0]], col, sizeOut=10)) im.save(outdir + '/viz_homo/%s' % (imPathList[i].split('/')[-1])) sys.stdout.write('Pairwise pre-tracking homogrpahy: [% 5.1f%%]\r' % (100.0 * float(i / len(mList)))) sys.stdout.flush() import subprocess subprocess.call([ 'tar', '-zcf', outdir + '/viz_homo.tar.gz', '-C', outdir + '/viz_homo', '.' ]) print('Pairwise pre-tracking homogrpahy completed.')
def demo_images(): """ Input is the path of file containing list of directories of video images. """ # Hard coded parameters # VSB has 121 images per video # FBMS has 100-250 images per video # DAVIS has 60-70 images per video # For Shot: maxShots = 5 vmax = 0.6 colBins = 40 # For NLC: redirect = True # redirecting to output file ? won't print status frameGap = 0 # 0 means adjusted automatically per shot (not per video) maxSide = 650 # max length of longer side of Im minShot = 10 # minimum shot length maxShot = 110 # longer shots will be shrinked between [maxShot/2, maxShot] binTh = 0.7 # final thresholding to obtain mask clearVoteBlobs = True # remove small blobs in consensus vote; uses binTh relEnergy = binTh - 0.1 # relative energy in consensus vote blob removal clearFinalBlobs = True # remove small blobs finally; uses binTh maxsp = 400 iters = 50 # For CRF: gtProb = 0.7 posTh = binTh negTh = 0.4 # For blob removal post CRF: more like salt-pepper noise removal bSize = 25 # 0 means not used, [0,1] relative, >=1 means absolute # parse commandline parameters args = parse_args() np.random.seed(args.seed) doload = bool(args.doload) dosave = bool(args.dosave) # read directory names with open(args.imdirFile) as f: imDirs = f.readlines() imDirs = [line.rstrip('\n') for line in imDirs] # keep only the current shard if args.shardId >= args.numShards: print('Give valid shard id which is less than numShards') exit(1) imDirs = [ x for i, x in enumerate(imDirs) if i % args.numShards == args.shardId ] print('NUM SHARDS: %03d, SHARD ID: %03d, CURRENT NUM VIDEOS: %03d\n\n' % (args.numShards, args.shardId, len(imDirs))) for imdir in imDirs: # setup input directory print( '-------------------------------------------------------------\n') print('Video InputDir: ', imdir) numTries = 0 totalTries = 2 sleepTime = 60 while numTries < totalTries: imPathList = utils.read_r(imdir, '*.jpg') # imPathList = imPathList + utils.read_r(imdir, '*.bmp') if len(imPathList) < 1: print('Failed to load ! Trying again in %d seconds' % sleepTime) numTries += 1 time.sleep(sleepTime) # delays for x seconds else: break if len(imPathList) < 2: print('Not enough images in image directory: \n%s' % imdir) # print('Continuing to next one ...') # continue assert False, 'Image directory does not exist !!' # setup output directory suffix = imdir.split('/')[-1] suffix = imdir.split('/')[-2] if suffix == '' else suffix outNlcIm = args.baseOutdir.split('/') + \ ['nlcim', 'shard%03d' % args.shardId] + imdir.split('/')[3:] outNlcPy = args.baseOutdir.split('/') + ['nlcpy' ] + imdir.split('/')[3:] outCrf = args.baseOutdir.split('/') + \ ['crfim', 'shard%03d' % args.shardId] + imdir.split('/')[3:] outIm = args.baseOutdir.split('/') + \ ['im', 'shard%03d' % args.shardId] + imdir.split('/')[3:] outNlcIm = '/'.join(outNlcIm) outNlcPy = '/'.join(outNlcPy) outCrf = '/'.join(outCrf) outIm = '/'.join(outIm) outVidNlc = args.baseOutdir + '/nlcvid/' outVidCRF = args.baseOutdir + '/crfvid/' utils.mkdir_p(outNlcIm) utils.mkdir_p(outNlcPy) utils.mkdir_p(outCrf) utils.mkdir_p(outIm) utils.mkdir_p(outVidNlc) utils.mkdir_p(outVidCRF) print('Video OutputDir: ', outNlcIm) # resize images if needed h, w, c = np.array(Image.open(imPathList[0])).shape frac = min(min(1. * maxSide / h, 1. * maxSide / w), 1.0) if frac < 1.0: h, w, c = imresize(np.array(Image.open(imPathList[0])), frac).shape imSeq = np.zeros((len(imPathList), h, w, c), dtype=np.uint8) for i in range(len(imPathList)): if frac < 1.0: imSeq[i] = imresize(np.array(Image.open(imPathList[i])), frac) else: imSeq[i] = np.array(Image.open(imPathList[i])) # First run shot detector if not doload: shotIdx = vid2shots.vid2shots(imSeq, maxShots=maxShots, vmax=vmax, colBins=colBins) if dosave: np.save(outNlcPy + '/shotIdx_%s.npy' % suffix, shotIdx) else: shotIdx = np.load(outNlcPy + '/shotIdx_%s.npy' % suffix) print('Total Shots: ', shotIdx.shape, shotIdx) # Adjust frameGap per shot, and then run NLC per shot for s in range(shotIdx.shape[0]): suffixShot = suffix + '_shot%d' % (s + 1) shotS = shotIdx[s] # 0-indexed, included shotE = imSeq.shape[0] if s == shotIdx.shape[0] - 1 \ else shotIdx[s + 1] # 0-indexed, excluded shotL = shotE - shotS if shotL < minShot: continue frameGapLocal = frameGap if frameGapLocal <= 0 and shotL > maxShot: frameGapLocal = int(shotL / maxShot) imPathList1 = imPathList[shotS:shotE:frameGapLocal + 1] imSeq1 = imSeq[shotS:shotE:frameGapLocal + 1] print('\nShot: %d, Shape: ' % (s + 1), imSeq1.shape) if not doload: maskSeq = nlc.nlc(imSeq1, maxsp=maxsp, iters=iters, outdir=outNlcPy, suffix=suffixShot, clearBlobs=clearVoteBlobs, binTh=binTh, relEnergy=relEnergy, redirect=redirect, doload=doload, dosave=dosave) if clearFinalBlobs: maskSeq = nlc.remove_low_energy_blobs(maskSeq, binTh) if dosave: np.save(outNlcPy + '/mask_%s.npy' % suffixShot, maskSeq) if doload: maskSeq = np.load(outNlcPy + '/mask_%s.npy' % suffixShot) # run crf, run blob removal and save as images sequences sTime = time.time() crfSeq = np.zeros(maskSeq.shape, dtype=np.uint8) for i in range(maskSeq.shape[0]): # save soft score as png between 0 to 100. # Use binTh*100 to get FG in later usage. mask = (maskSeq[i] * 100).astype(np.uint8) Image.fromarray(mask).save(outNlcIm + '/' + imPathList1[i].split('/')[-1][:-4] + '.png') Image.fromarray(imSeq1[i]).save(outIm + '/' + imPathList1[i].split('/')[-1]) crfSeq[i] = crf.refine_crf(imSeq1[i], maskSeq[i], gtProb=gtProb, posTh=posTh, negTh=negTh, crfParams=args.crfParams) crfSeq[i] = utils.refine_blobs(crfSeq[i], bSize=bSize) Image.fromarray( crfSeq[i]).save(outCrf + '/' + imPathList1[i].split('/')[-1][:-4] + '.png') if not redirect: sys.stdout.write( 'CRF, blob removal and saving: [% 5.1f%%]\r' % (100.0 * float((i + 1) / maskSeq.shape[0]))) sys.stdout.flush() eTime = time.time() print('CRF, blob removal and saving images finished: %.2f s' % (eTime - sTime)) # save as video sTime = time.time() vidName = '_'.join(imdir.split('/')[3:]) + '_shot%d.avi' % (s + 1) utils.im2vid(outVidNlc + vidName, imSeq1, (maskSeq > binTh).astype(np.uint8)) utils.im2vid(outVidCRF + vidName, imSeq1, crfSeq) eTime = time.time() print('Saving videos finished: %.2f s' % (eTime - sTime)) # Tarzip the results of this shard and delete the individual files import subprocess for i in ['im', 'crfim', 'nlcim']: tarDir = args.baseOutdir + '/%s/shard%03d' % (i, args.shardId) subprocess.call(['tar', '-zcf', tarDir + '.tar.gz', '-C', tarDir, '.']) utils.rmdir_f(tarDir) return
def demo_videos(): """ Input is the path of directory containing raw videos """ # Hard coded parameters maxSide = 600 # max length of longer side of Im lenSeq = 35 # longer seq will be shrinked between [lenSeq/2, lenSeq] binTh = 0.4 # final thresholding to obtain mask clearFinalBlobs = True # remove low energy blobs; uses binTh vidDir = '/home/dpathak/local/data/trash/videos' # parse commandline parameters args = parse_args() np.random.seed(args.seed) print('InputDir: ', vidDir) print('OutputDir: ', args.outdir) vidPathList = utils.read_r(vidDir, '*.mp4') for i in range(len(vidPathList)): print('\nCurrent VideoPath: ', vidPathList[i]) # load video imSeq = utils.vid2im(vidPathList[i]) n, h, w, c = imSeq.shape # adjust frameGap frameGap = args.frameGap if frameGap <= 0 and n > lenSeq: frameGap = int(n / lenSeq) imSeq = imSeq[::frameGap + 1] n = imSeq.shape[0] # adjust size frac = min(min(1. * maxSide / h, 1. * maxSide / w), 1.0) if frac < 1.0: h, w, c = imresize(imSeq[0], frac).shape imSeq2 = np.zeros((n, h, w, c), dtype=np.uint8) for j in range(n): imSeq2[j] = imresize(imSeq[j], frac) imSeq = imSeq2 print('Total Video Shape: ', imSeq.shape) if imSeq.shape[1] < 2: print('Not enough images in this video') print('Continuing to next one ...') continue # setup output directory suffix = vidPathList[i].split('/')[-1] suffix = vidPathList[i].split('/')[-2] if suffix == '' else suffix suffix = suffix[:-4] outdirV = args.outdir + '/' + suffix utils.mkdir_p(outdirV) print('OutputDir for current Video: ', outdirV) # run the algorithm maskSeq = nlc(imSeq, maxsp=args.maxsp, iters=args.iters, outdir=outdirV) np.save(outdirV + '/mask_%s.npy' % suffix, maskSeq) # save visual results if clearFinalBlobs: maskSeq = remove_low_energy_blobs(maskSeq, binTh) utils.rmdir_f(outdirV + '/result_%s/' % suffix) utils.mkdir_p(outdirV + '/result_%s/' % suffix) outvidfile = outdirV + '/video_%s.avi' % suffix utils.im2vid(outvidfile, imSeq, maskSeq) for i in range(maskSeq.shape[0]): mask = (maskSeq[i] > binTh).astype(np.uint8) grayscaleimage = (color.rgb2gray(imSeq[i]) * 255.).astype(np.uint8) imMasked = np.zeros(imSeq[i].shape, dtype=np.uint8) for c in range(3): imMasked[:, :, c] = grayscaleimage / 2 + 127 imMasked[mask.astype(np.bool), 1:] = 0 Image.fromarray(imMasked).save(outdirV + '/result_%s/frame_%05d.png' % (suffix, i)) import subprocess subprocess.call([ 'tar', '-zcf', outdirV + '/../result_%s.tar.gz' % suffix, '-C', outdirV + '/result_%s/' % suffix, '.' ]) return
def demo_images(): """ Input is the path of directory (imdir) containing images of a video """ # Hard coded parameters maxSide = 600 # max length of longer side of Im lenSeq = 35 # longer seq will be shrinked between [lenSeq/2, lenSeq] binTh = 0.4 # final thresholding to obtain mask clearFinalBlobs = True # remove low energy blobs; uses binTh # parse commandline parameters args = parse_args() np.random.seed(args.seed) if args.imdir == '': imagenetVideoList = '/mnt/vol/gfsai-local/ai-group/users/bharathh/' + \ 'imagenet_videos/ILSVRC2015/ImageSets/VID/' + \ 'train_10.txt' imagenetRoot = '/mnt/vol/gfsai-local/ai-group/users/bharathh/' + \ 'imagenet_videos/ILSVRC2015/Data/VID/train/' with open(imagenetVideoList, 'r') as f: lines = f.readlines() imdirs = [x.strip().split(' ')[0] for x in lines] imdirs = imdirs[np.random.randint(len(imdirs))] args.imdir = os.path.join(imagenetRoot, imdirs) args.outdir = os.path.join(args.outdir, imdirs) # setup input directory print('InputDir: ', args.imdir) imPathList = utils.read_r(args.imdir, '*.*') if len(imPathList) < 2: print('Not enough images in image directory: \n%s' % args.imdir) return # setup output directory suffix = args.imdir.split('/')[-1] suffix = args.imdir.split('/')[-2] if suffix == '' else suffix args.outdir = args.outdir + '/' + suffix utils.mkdir_p(args.outdir) print('OutputDir: ', args.outdir) # load image sequence after adjusting frame gap and imsize frameGap = args.frameGap if frameGap <= 0 and len(imPathList) > lenSeq: frameGap = int(len(imPathList) / lenSeq) imPathList = imPathList[0:len(imPathList):frameGap + 1] h, w, c = np.array(Image.open(imPathList[0])).shape frac = min(min(1. * maxSide / h, 1. * maxSide / w), 1.0) if frac < 1.0: h, w, c = imresize(np.array(Image.open(imPathList[0])), frac).shape imSeq = np.zeros((len(imPathList), h, w, c), dtype=np.uint8) for i in range(len(imPathList)): if frac < 1.0: imSeq[i] = imresize(np.array(Image.open(imPathList[i])), frac) else: imSeq[i] = np.array(Image.open(imPathList[i])) print('Total Video Shape: ', imSeq.shape) # run the algorithm maskSeq = nlc(imSeq, maxsp=args.maxsp, iters=args.iters, outdir=args.outdir) np.save(args.outdir + '/mask_%s.npy' % suffix, maskSeq) # save visual results if clearFinalBlobs: maskSeq = remove_low_energy_blobs(maskSeq, binTh) utils.rmdir_f(args.outdir + '/result_%s/' % suffix) utils.mkdir_p(args.outdir + '/result_%s/' % suffix) for i in range(maskSeq.shape[0]): mask = (maskSeq[i] > binTh).astype(np.uint8) grayscaleimage = (color.rgb2gray(imSeq[i]) * 255.).astype(np.uint8) imMasked = np.zeros(imSeq[i].shape, dtype=np.uint8) for c in range(3): imMasked[:, :, c] = grayscaleimage / 2 + 127 imMasked[mask.astype(np.bool), 1:] = 0 Image.fromarray(imMasked).save(args.outdir + '/result_%s/' % suffix + imPathList[i].split('/')[-1]) import subprocess subprocess.call([ 'tar', '-zcf', args.outdir + '/../result_%s.tar.gz' % suffix, '-C', args.outdir + '/result_%s/' % suffix, '.' ]) return
def run_dm_sequence(outdir, imPathList, frameGap=0, dmThresh=0, matchNbr=10, shotFrac=0, postTrackHomTh=-1, preTrackHomTh=-1, use_epic=False, vizFlow=False, vizTr=False, cpysrc=False): """ Run DeepMatch Code on a sequence of images of video to obtain tracks """ print('Outdir: ', outdir) # adjust image list according to frame Gap imPathList = imPathList[0:len(imPathList):frameGap + 1] # compute pariwise deepmatch across frames deepmatchdir = outdir + '/matches/' mList = [] if os.path.isdir(deepmatchdir): mList = utils.read_r(deepmatchdir, '*.txt') if not len(mList) == len(imPathList) - 1 or len(mList) == 0: utils.mkdir_p(deepmatchdir) for i in range(len(imPathList) - 1): matchfile = deepmatchdir + 'match_%04d.txt' % i run_dm_pair(imPathList[i], imPathList[i + 1], matchfile) sys.stdout.write('Pairwise DeepMatch: [% 5.1f%%]\r' % (100.0 * float(i / len(imPathList)))) sys.stdout.flush() print('Pairwise DeepMatch completed.') else: print('Pairwise DeepMatches already present in outdir. Using them.') # use epic flow densification process if use_epic: # TODO: rescore deepmatch flowdir = outdir + '/flow/' run_epicFlow_sequence(imPathList, flowdir, deepmatchdir, vizFlow) matchdir = flowdir dmThresh = -1 # deepmatch score no longer matters else: matchdir = deepmatchdir # run homography before matching sequences imW, imH = Image.open(imPathList[0]).size if preTrackHomTh > 0: preHomMatchdir = outdir + '/pre_homographies/' run_pre_homography(preHomMatchdir, matchdir, preTrackHomTh, imH, imW, dmThresh, imPathList, True) matchdir = preHomMatchdir dmThresh = -1 # deepmatch score no longer matters # resolve pairwise deep-matches to obtain sequence tracks totalShotTracks, shotends = match_sequence(imH, imW, matchdir, dmThresh, matchNbr, shotFrac) # after above tracking, find foreground points using homography if postTrackHomTh > 0: startF = 0 for endF in np.nditer(shotends): currshotTracks = totalShotTracks[startF:endF + 1, totalShotTracks[endF, :, 0] > -1000] fgPts = shot_homography(currshotTracks, postTrackHomTh) totalShotTracks[startF:endF + 1, :] = -1000 totalShotTracks[startF:endF + 1, :fgPts.shape[1]] = fgPts startF = endF + 1 # save matches: no longer need duplicated frame tuples totalShotTracks = totalShotTracks[:, :, :2] np.save(outdir + '/totalShotTracks.npy', totalShotTracks) np.save(outdir + '/shotends.npy', shotends) # visualize deepmatch tracks on images and save them if vizTr and totalShotTracks.size > 0: col = np.array([255, 0, 0], dtype='int') totalShotTracks.transpose() shotNum = 0 utils.rmdir_f(outdir + '/viz_tracks/') utils.mkdir_p(outdir + '/viz_tracks/%d' % shotNum) for i in range(len(imPathList)): validPts = totalShotTracks[i, totalShotTracks[i, :, 0] > -1000] im = np.array(Image.open(imPathList[i])) im = Image.fromarray( utils.draw_point_im(im, validPts[:, ::-1], col, sizeOut=10)) im.save(outdir + '/viz_tracks/%d/%s' % (shotNum, imPathList[i].split('/')[-1])) if i == shotends[shotNum] and i < len(imPathList) - 1: shotNum += 1 utils.mkdir_p(outdir + '/viz_tracks/%d' % shotNum) import subprocess subprocess.call([ 'tar', '-zcf', outdir + '/viz_tracks.tar.gz', '-C', outdir + '/viz_tracks', '.' ]) print('Track visualization saved.') # copy src images to output dir for which tracking performed if cpysrc: from shutil import copy utils.mkdir_p(outdir + '/origImages/') for i in range(len(imPathList)): copy(imPathList[i], outdir + '/origImages/') print('Source images copied to outdir.')
def match_sequence(imH, imW, matchdir, dmThresh=0, matchNbr=10, shotFrac=0): """ Perform matches for a sequence of pairwise deepmatch Input: imH, imW: video height and width matchdir: dir of matches: x0, y0, x1, y1, score, index dmThresh: l-bound for score of deepmatched points to use matchNbr: Neighborhood pixel tolerance for tracked points b/w frames shotFrac: l-bound on fraction of points to be tracked in a temporal shot Output: nFrames x nPoints x 2 : (x,y) of fully tracked points """ def calc_match(list1, list2): """ Input: list1: nxd array list2: mxd array Output: matchInd: nx1 array containing indicex of closest pt in list2 matchDist: nx1 array containing distance from closest pt in list2 """ pairwiseDist = np.sqrt( np.sum(np.square(list1[..., None] - list2[..., None].T), axis=1)) matchInd = np.argmin(pairwiseDist, axis=1) matchDist = np.amin(pairwiseDist, axis=1) return matchInd, matchDist matchNbr *= np.sqrt(2) mList = utils.read_r(matchdir, '*.txt') # total shots: (numFrames,numPts,4) # 4 denotes (x,y) of common frame across pairs; kept for accurate homography totalShotTracks = np.ones((0, 0, 4), dtype='int') currShotTracks = np.ones((0, 0, 4), dtype='int') shotends = [] # value is zero indexed and included # perform frame wise matching for i in range(len(mList)): trackCurr = read_dmOutput(mList[i], imH, imW, dmThresh) if currShotTracks.size == 0: # empty match file: may happen after homography if trackCurr.size == 0: continue initNumTracks = trackCurr.shape[0] currShotTracks = np.ones( (1 + len(mList), initNumTracks, 4), dtype='int') * -1000 currShotTracks[i, :, :2] = trackCurr[:, :2] currShotTracks[i + 1, :, :2] = trackCurr[:, 2:4] continue if trackCurr.size != 0: matchInd, matchDist = calc_match(currShotTracks[i, :, :2], trackCurr[:, :2]) currNumTracks = matchInd[matchDist <= matchNbr].shape[0] if trackCurr.size == 0 or currNumTracks <= shotFrac * initNumTracks: # store just finished shot shotends.append(i) currShotTracks = currShotTracks[:, currShotTracks[i, :, 0] > -1000] oldTotal = totalShotTracks totalShotTracks = np.ones( (1 + i, max(oldTotal.shape[1], currShotTracks.shape[1]), 4), dtype='int') * -1000 totalShotTracks[:oldTotal.shape[0], :oldTotal.shape[1]] = \ np.copy(oldTotal) totalShotTracks[oldTotal.shape[0]:, :currShotTracks.shape[1]] = \ np.copy(currShotTracks[oldTotal.shape[0]:1 + i]) currShotTracks = np.ones((0, 0, 4), dtype='int') else: currShotTracks[i, matchDist <= matchNbr, 2:] = \ trackCurr[matchInd[matchDist <= matchNbr], :2] currShotTracks[i + 1, matchDist <= matchNbr, :2] = \ trackCurr[matchInd[matchDist <= matchNbr], 2:4] sys.stdout.write('Matching sequences for tracking: [% 5.1f%%]\r' % (100.0 * float(i / len(mList)))) sys.stdout.flush() # store last completed shot shotends.append(len(mList)) oldTotal = totalShotTracks if currShotTracks.size != 0: currShotTracks = currShotTracks[:, currShotTracks[-1, :, 0] > -1000] totalShotTracks = np.ones( (1 + len(mList), max(oldTotal.shape[1], currShotTracks.shape[1]), 4), dtype='int') * -1000 totalShotTracks[:oldTotal.shape[0], :oldTotal.shape[1]] = \ np.copy(oldTotal) totalShotTracks[oldTotal.shape[0]:, :currShotTracks.shape[1]] = \ np.copy(currShotTracks[oldTotal.shape[0]:]) else: totalShotTracks = np.ones( (1 + len(mList), max(oldTotal.shape[1], trackCurr.shape[0]), 4), dtype='int') * -1000 totalShotTracks[:oldTotal.shape[0], :oldTotal.shape[1]] = \ np.copy(oldTotal) print('Matching sequences for tracking completed: %d shots.' % len(shotends)) return totalShotTracks, np.array(shotends)
def demo_images(): """ Input is the path of directory (imdir) containing images of a video """ # Hard coded parameters maxSide = 400 # max length of longer side of Im lenSeq = 1e8 # longer seq will be shrinked between [lenSeq/2, lenSeq] # parse commandline parameters args = parse_args() np.random.seed(args.seed) if args.imdir == '': imagenetVideoList = '/mnt/vol/gfsai-local/ai-group/users/bharathh/' + \ 'imagenet_videos/ILSVRC2015/ImageSets/VID/' + \ 'train_10.txt' imagenetRoot = '/mnt/vol/gfsai-local/ai-group/users/bharathh/' + \ 'imagenet_videos/ILSVRC2015/Data/VID/train/' with open(imagenetVideoList, 'r') as f: lines = f.readlines() imdirs = [x.strip().split(' ')[0] for x in lines] imdirs = imdirs[np.random.randint(len(imdirs))] args.imdir = os.path.join(imagenetRoot, imdirs) args.outdir = os.path.join(args.outdir, imdirs) # setup input directory print('InputDir: ', args.imdir) imPathList = utils.read_r(args.imdir, '*.*') if len(imPathList) < 2: print('Not enough images in image directory: \n%s' % args.imdir) return # setup output directory suffix = args.imdir.split('/')[-1] suffix = args.imdir.split('/')[-2] if suffix == '' else suffix args.outdir = args.outdir + '/' + suffix utils.mkdir_p(args.outdir) print('OutputDir: ', args.outdir) # load image sequence after adjusting frame gap and imsize frameGap = args.frameGap if frameGap <= 0 and len(imPathList) > lenSeq: frameGap = int(len(imPathList) / lenSeq) imPathList = imPathList[0:len(imPathList):frameGap + 1] h, w, c = np.array(Image.open(imPathList[0])).shape frac = min(min(1. * maxSide / h, 1. * maxSide / w), 1.0) if frac < 1.0: h, w, c = imresize(np.array(Image.open(imPathList[0])), frac).shape imSeq = np.zeros((len(imPathList), h, w, c), dtype=np.uint8) for i in range(len(imPathList)): if frac < 1.0: imSeq[i] = imresize(np.array(Image.open(imPathList[i])), frac) else: imSeq[i] = np.array(Image.open(imPathList[i])) print('Total Video Shape: ', imSeq.shape) # run the algorithm shotIdx = vid2shots(imSeq, maxShots=args.maxShots, vmax=args.vmax, colBins=args.colBins) print('Total Shots: ', shotIdx.shape, shotIdx) np.save(args.outdir + '/shotIdx_%s.npy' % suffix, shotIdx) # save visual results from PIL import ImageDraw utils.rmdir_f(args.outdir + '/shots_%s/' % suffix) utils.mkdir_p(args.outdir + '/shots_%s/' % suffix) frameNo = 1 shotNo = 0 for i in range(imSeq.shape[0]): img = Image.fromarray(imSeq[i]) draw = ImageDraw.Draw(img) if i in shotIdx: draw.text((100, 100), "New Shot Begins !!", (255, 255, 255)) shotNo += 1 frameNo = 1 draw.text((10, 10), "Shot: %02d, Frame: %03d" % (shotNo, frameNo), (255, 255, 255)) img.save(args.outdir + '/shots_%s/' % suffix + imPathList[i].split('/')[-1]) frameNo += 1 import subprocess subprocess.call([ 'tar', '-zcf', args.outdir + '/../shots_%s.tar.gz' % suffix, '-C', args.outdir + '/shots_%s/' % suffix, '.' ]) return