def load_data(params, dataset_pickle_file='notMNIST.pickle'): with open(dataset_pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory train_dataset, train_labels = utils.reformat(train_dataset, train_labels, params) valid_dataset, valid_labels = utils.reformat(valid_dataset, valid_labels, params) test_dataset, test_labels = utils.reformat(test_dataset, test_labels, params) print('---- Input data shapes: -----') print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) return [ train_dataset, train_labels, valid_dataset, valid_labels, valid_dataset, valid_labels ]
def showresults(request): elapsedtime = 0.0 context = setConstants(request, im) try: status = request.GET['status'] except: status = 'showfile' filename = request.GET['filename'] context['filename'] = filename context['jobstatus'] = request.GET['status'] f = open(getJobfile(filename), "rb") filecontent = f.read() if status == 'showmedia': context['derivativegrid'] = 'Medium' context['sizegrid'] = '240px' context['imageserver'] = prmz.IMAGESERVER context['items'] = rendermedia(filecontent) elif status == 'showinportal': pass else: context['filecontent'] = reformat(filecontent) elapsedtime = time.time() - elapsedtime context = setContext(context, elapsedtime) return render(request, 'uploadmedia.html', context)
def warp_flow(img, flow): img = np.float32(reformat(img)) h, w = flow.shape[:2] flow = -flow flow[:, :, 0] += np.arange(w) flow[:, :, 1] += np.arange(h)[:, np.newaxis] res = cv2.remap(img, flow, None, cv2.INTER_LINEAR) # res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB) return res
def opticalflow(img1, img2): b, c, h, w = img1.shape # examine(img1, 'img1 before reformat') img1 = np.float32(reformat(img1)) img2 = np.float32(reformat(img2)) # examine(img1, 'img1 after reformat') prev = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY) nxt = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY) # examine(prev, 'prev = img1 in grayscale') flow = cv2.calcOpticalFlowFarneback( prev, nxt, flow=None, pyr_scale=0.5, levels=3, # wb 1? winsize=15, iterations=3, # wb 2? poly_n=5, poly_sigma=1.2, # wb 1.1? flags=0) # examine(flow, 'flow:') hsv = np.zeros_like(img1, np.uint8) hsv[:, :, 1] = 255 mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1]) hsv[..., 0] = ang * 180 / np.pi / 2 hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) # examine(hsv, 'final hsv:') rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) rgb = np.float32(rgb) rgb = array_to_torch(rgb) # examine(rgb, 'rgb final') return rgb, flow
def recognize(im): width, height = im.size change_point_y = get_change_point_y(im) if len(change_point_y) < 1: bottom = height else: bottom = change_point_y[-1] t_im = im.crop((0.05 * width, 0.18 * height, 0.95 * width, bottom)) # x0, y0, x1, y1 # t_im.show() t_str = pytesseract.image_to_string(t_im, lang="chi_sim", config="-psm 6") t_str = reformat(t_str)[2:] if t_str.count("\n") > 3: t_str = t_str.replace("\n", "", 1).replace("\n", " ") else: t_str = t_str.replace("\n", " ") return t_str
def main(): args = parse_args() try: LOCAL_FLAG = True with open(args.input, 'r', encoding='utf8') as fp: result = reformat(fp, ABP_ALLOW_FMT) except IOError: LOCAL_FLAG = False print('Unable to open rule file, trying to get online list...') result = get_online_list(ABP_ALLOW_FMT) if LOCAL_FLAG: last_modified = datetime.utcfromtimestamp(os.path.getmtime(args.input)) else: last_modified = datetime.utcnow() with open(args.output, mode='w', encoding='utf8', newline='\n') as fp: fp.write(f'! Last Modified: {last_modified.isoformat()}\n\n') fp.writelines(result) print('Done!')
def recognize(im): width, height = im.size change_point_y = get_change_point_y(im) if len(change_point_y) < 1: bottom = height else: bottom = change_point_y[-1] t_im = im.crop( (0.05 * width, 0.18 * height, 0.95 * width, bottom)) # x0, y0, x1, y1 # t_im.show() t_str = pytesseract.image_to_string(t_im, lang="chi_sim", config="-psm 6") t_str = reformat(t_str)[2:] if t_str.count("\n") > 3: t_str = t_str.replace("\n", "", 1).replace("\n", " ") else: t_str = t_str.replace("\n", " ") return t_str
assert current_folder == '/Users/futianfan/Downloads/Gatech_Courses/mimic_text/' assert data_folder == '/Users/futianfan/Downloads/Gatech_Courses/mimic_text/data' assert mimic3_folder == '/Users/futianfan/Downloads/Gatech_Courses/mimic_text/data/mimic3' ''' STEP 1-5 notes_labeled.csv ''' #### 1. combine procedure.csv and diagnosis.csv => ALL_CODES.csv t1 = time() proc_file = pd.read_csv('{}/PROCEDURES_ICD.csv'.format(mimic3_folder)) diag_file = pd.read_csv('{}/DIAGNOSES_ICD.csv'.format(mimic3_folder)) proc_file['absolute_code'] = proc_file.apply( lambda row: str(utils.reformat(str(row[4]), True)), axis=1) diag_file['absolute_code'] = diag_file.apply( lambda row: str(utils.reformat(str(row[4]), True)), axis=1) allcodes = pd.concat([diag_file, proc_file]) allcodes.to_csv( '%s/ALL_CODES.csv' % mimic3_folder, index=False, columns=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'SEQ_NUM', 'absolute_code'], header=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'SEQ_NUM', 'ICD9_CODE']) df = pd.read_csv('%s/ALL_CODES.csv' % mimic3_folder, dtype={"ICD9_CODE": str}) leng = len(df['ICD9_CODE'].unique()) ### 8994 print('ALL_CODES has {} different ICD codes'.format(leng)) print('STEP 1. combining procedure.csv and diagnosis.csv takes {} seconds'. format(int(time() - t1))) ### 68 seconds
img_shape = (640, 360) videonames = ['output1.mp4', '9_17_s.mp4', '22_26_s.mp4'] transform = transforms.ToTensor() loader = get_loader(1, data_path, img_shape, transform, video_list=videonames, frame_nb=10, shuffle=False) for idx, frames in enumerate(loader): print(idx, len(frames)) f1, f2 = frames[2], frames[3] examine(f1, 'f1 raw') f1 = reformat(f1) f2 = reformat(f2) examine(f1, 'f1 reformated') f1 = np.float32(f1) # / 255) f2 = np.float32(f2) # / 255) examine(f1, 'im1 intermediate') examine(f2, 'im2 intermediate') im1 = cv2.cvtColor(f1, cv2.COLOR_RGB2GRAY) im2 = cv2.cvtColor(f2, cv2.COLOR_RGB2GRAY) examine(im1, 'im1 ready') examine(im2, 'im2 ready') flow = cv2.calcOpticalFlowFarneback(im1, im2, None, 0.5, 3, 15, 3, 5, 1.2, 0) print('OF done!')
out = cv2.VideoWriter('output_test{}.mp4'.format(count+8), fourcc, 20.0, (2*width, height)) print(len(frames)) for i in range(10): print('{}/{}'.format(i, len(frames))) t1 = time.time() # get frame frame = frames[i] if t.gpu: frame = frame.cuda() # get processed image output = style_transfer(frame, t) # convert image types frame = reformat(frame) output = reformat(output) # concatenate images img = np.concatenate((frame,output),axis=1) # save img out.write(np.uint8(img)) t2 = time.time() #print('{0:.3f} s'.format(t2-t1)) # cleaning things video.release() out.release() count += 1
import csv import operator from options import args from utils import build_vocab, word_embeddings, fasttext_embeddings, gensim_to_fasttext_embeddings, gensim_to_embeddings, \ reformat, write_discharge_summaries, concat_data, split_data Y = 'full' notes_file = '%s/NOTEEVENTS.csv' % args.MIMIC_3_DIR # step 1: process code-related files dfproc = pd.read_csv('%s/PROCEDURES_ICD.csv' % args.MIMIC_3_DIR) dfdiag = pd.read_csv('%s/DIAGNOSES_ICD.csv' % args.MIMIC_3_DIR) dfdiag['absolute_code'] = dfdiag.apply(lambda row: str(reformat(str(row[4]), True)), axis=1) dfproc['absolute_code'] = dfproc.apply(lambda row: str(reformat(str(row[4]), False)), axis=1) dfcodes = pd.concat([dfdiag, dfproc]) dfcodes.to_csv('%s/ALL_CODES.csv' % args.MIMIC_3_DIR, index=False, columns=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'SEQ_NUM', 'absolute_code'], header=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'SEQ_NUM', 'ICD9_CODE']) df = pd.read_csv('%s/ALL_CODES.csv' % args.MIMIC_3_DIR, dtype={"ICD9_CODE": str}) print("unique ICD9 code: {}".format(len(df['ICD9_CODE'].unique()))) # step 2: process notes min_sentence_len = 3 disch_full_file = write_discharge_summaries("%s/disch_full.csv" % args.MIMIC_3_DIR, min_sentence_len, '%s/NOTEEVENTS.csv' % (args.MIMIC_3_DIR))
from collections import Counter import csv import operator from utils.options import args from utils import build_vocab, word_embeddings, fasttext_embeddings, gensim_to_fasttext_embeddings, gensim_to_embeddings, \ reformat, write_discharge_summaries, concat_data, split_data Y = 'full' notes_file = '%s/NOTEEVENTS.csv' % args.MIMIC_3_DIR # step 1: process code-related files dfproc = pd.read_csv('%s/PROCEDURES_ICD.csv' % args.MIMIC_3_DIR) dfdiag = pd.read_csv('%s/DIAGNOSES_ICD.csv' % args.MIMIC_3_DIR) dfdiag['absolute_code'] = dfdiag.apply( lambda row: str(reformat(str(row[4]), True)), axis=1) dfproc['absolute_code'] = dfproc.apply( lambda row: str(reformat(str(row[4]), False)), axis=1) dfcodes = pd.concat([dfdiag, dfproc]) dfcodes.to_csv( '%s/ALL_CODES.csv' % args.MIMIC_3_DIR, index=False, columns=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'SEQ_NUM', 'absolute_code'], header=['ROW_ID', 'SUBJECT_ID', 'HADM_ID', 'SEQ_NUM', 'ICD9_CODE']) df = pd.read_csv('%s/ALL_CODES.csv' % args.MIMIC_3_DIR, dtype={"ICD9_CODE": str}) print("unique ICD9 code: {}".format(len(df['ICD9_CODE'].unique())))