def train_cifar(args, nb_epochs, trainloader,testloader, net,optimizer,criterion,logging_freq=2000): # TODO: test loss for epoch in range(nb_epochs): # loop over the dataset multiple times running_train_loss = 0.0 #running_test_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs start_time = time.time() inputs, labels = data if args.enable_cuda: inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_train_loss += loss.data[0] seconds,minutes,hours = utils.report_times(start_time) st() if i % logging_freq == logging_freq-1: # print every logging_freq mini-batches # note you dividing by logging_freq because you summed logging_freq mini-batches, so the average is dividing by logging_freq. print(f'monitoring during training: eptoch={epoch+1}, batch_index={i+1}, loss={running_train_loss/logging_freq}') running_train_loss = 0.0
def test_report_times(self): eps = 0.01 ## start = time.time() time.sleep(0.5) msg, h = timeSince(start) ## start = time.time() time.sleep(0.5) msg, seconds, _, _ = report_times(start) ## diff = abs(seconds - h*60*60) self.assertTrue(diff <= eps)
def main(plot=True): if args.means != '': means = [float(x.strip()) for x in args.means.strip('[').strip(']').split(',')] else: means = [] if args.stds != '': stds = [float(x.strip()) for x in args.stds.strip('[').strip(']').split(',')] else: stds = [] ## hostname = utils.get_hostname() ''' cuda ''' use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") print(f'device = {device}') ''' ''' store_net = True other_stats = dict({'sj':sj,'satid':satid,'hostname':hostname,'label_corrupt_prob':args.label_corrupt_prob}) ''' reproducibility setup/params''' #num_workers = 2 # how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. githash = subprocess.check_output(["git", "describe", "--always"]).strip() seed = args.seed if seed is None: # if seed is None it has not been set, so get a random seed, else use the seed that was set seed = int.from_bytes(os.urandom(7), byteorder="big") print(f'seed: {seed}') ## SET SEED/determinism num_workers = 3 torch.manual_seed(seed) #torch.backends.cudnn.deterministic=True ''' date parameters setup''' today_obj = date.today() # contains datetime.date(year, month, day); accessible via .day etc day = today_obj.day month = calendar.month_name[today_obj.month] setup_time = time.time() ''' filenames ''' ## folder names results_root = './test_runs_flatness5_ProperOriginalExpt' expt_folder = f'flatness_{month}_label_corrupt_prob_{args.label_corrupt_prob}_exptlabel_{args.exptlabel}_' \ f'only_1st_layer_BIAS_{args.only_1st_layer_bias}_data_set_{args.data_set}_reg_param_{args.reg_param}' ## filenames matlab_file_name = f'flatness_{day}_{month}_sj_{sj}_staid_{satid}_seed_{seed}_{hostname}' net_file_name = f'net_{day}_{month}_sj_{sj}_staid_{satid}_seed_{seed}_{hostname}' ## folder to hold all nets all_nets_folder = f'nets_folder_{day}_{month}_sj_{sj}_staid_{satid}_seed_{seed}_{hostname}' ## experiment path expt_path = os.path.join(results_root,expt_folder) ''' data set ''' data_path = './data' standardize = not args.dont_standardize_data # x - mu / std , [-1,+1] trainset, testset, classes = data_class.get_data_processors(data_path,args.label_corrupt_prob,dataset_type=args.data_set,standardize=standardize,type_standardize=args.type_standardize) ''' experiment params ''' evalaute_mdl_data_set = get_function_evaluation_from_name(args.evalaute_mdl_data_set) suffle_test = False shuffle_train = True nb_epochs = 4 if args.epochs is None else args.epochs batch_size = 256 #batch_size_train,batch_size_test = batch_size,batch_size batch_size_train = batch_size batch_size_test = 256 ''' get NN ''' nets = [] mdl = args.mdl do_bn = args.use_bn other_stats = dict({'mdl':mdl,'do_bn':do_bn, 'type_standardize':args.type_standardize},**other_stats) print(f'model = {mdl}') if mdl == 'cifar_10_tutorial_net': suffle_test = False net = nn_mdls.Net() nets.append(net) elif mdl == 'debug': suffle_test = False nb_conv_layers=1 ## conv params Fs = [3]*nb_conv_layers Ks = [2]*nb_conv_layers ## fc params FC = len(classes) C,H,W = 3,32,32 net = nn_mdls.LiaoNet(C,H,W,Fs,Ks,FC,do_bn) nets.append(net) elif mdl == 'sequential': batch_size_train = 256 batch_size_test = 256 ## batch_size = batch_size_train suffle_test = False ## FC = [10,10] C,H,W = 3, 32, 32 # net = torch.nn.Sequential(OrderedDict([ # ('Flatten',Flatten()), # ('FC1', torch.nn.Linear(C*H*W,FC[0])), # ('FC2', torch.nn.Linear(FC[0],FC[1])) # ])) # net = torch.nn.Sequential(OrderedDict([ # ('Flatten',Flatten()), # ('FC1', torch.nn.Linear(C*H*W,FC[0])), # ('relu1', torch.nn.ReLU()), # ('FC2', torch.nn.Linear(FC[0],FC[1])) # ])) net = torch.nn.Sequential(OrderedDict([ ('conv0', torch.nn.Conv2d(3,420,5,bias=True)), ('relu0', torch.nn.ReLU()), ('conv1', torch.nn.Conv2d(420,50,5, bias=True)), ('relu1', torch.nn.ReLU()), ('Flatten',Flatten()), ('FC1', torch.nn.Linear(28800,50,bias=True)), ('relu2', torch.nn.ReLU()), ('FC2', torch.nn.Linear(50, 10, bias=True)) ])) ## nets.append(net) elif mdl == 'BoixNet': batch_size_train = 256 batch_size_test = 256 ## batch_size = batch_size_train suffle_test = False ## conv params nb_filters1,nb_filters2 = 32, 32 nb_filters1, nb_filters2 = 32, 32 kernel_size1,kernel_size2 = 5,5 ## fc params nb_units_fc1,nb_units_fc2,nb_units_fc3 = 512,256,len(classes) C,H,W = 3,32,32 net = nn_mdls.BoixNet(C,H,W,nb_filters1,nb_filters2, kernel_size1,kernel_size2, nb_units_fc1,nb_units_fc2,nb_units_fc3,do_bn) nets.append(net) elif mdl == 'LiaoNet': suffle_test = False nb_conv_layers=5 ## conv params Fs = [32]*nb_conv_layers Ks = [10]*nb_conv_layers ## fc params FC = len(classes) C,H,W = 3,32,32 net = nn_mdls.LiaoNet(C,H,W,Fs,Ks,FC,do_bn) nets.append(net) elif mdl == 'GBoixNet': #batch_size_train = 16384 # 2**14 #batch_size_test = 16384 batch_size_train = 2**10 batch_size_test = 2**10 ## batch_size = batch_size_train suffle_test = False ## conv params nb_conv_layers=2 Fs = [34]*nb_conv_layers Ks = [5]*nb_conv_layers #nb_conv_layers = 4 #Fs = [60] * nb_conv_layers #Ks = [5] * nb_conv_layers ## fc params FCs = [len(classes)] ## print(f'------> FCs = {FCs}') if args.data_set == 'mnist': CHW = (1, 28, 28) else: CHW = (3,32,32) net = nn_mdls.GBoixNet(CHW,Fs,Ks,FCs,do_bn,only_1st_layer_bias=args.only_1st_layer_bias) print(f'net = {net}') ## if len(means) != 0 and len(stds) != 0: params = net.named_parameters() dict_params = dict(params) i = 0 for name, param in dict_params.items(): if name in dict_params: print(name) if name != 'conv0.bias': mu,s = means[i], stds[i] param.data.normal_(mean=mu,std=s) i+=1 ## expt_path = f'{expt_path}_means_{args.means}_stds_{args.stds}' other_stats = dict({'means': means, 'stds': stds}, **other_stats) ## nets.append(net) other_stats = dict({'only_1st_layer_bias': args.only_1st_layer_bias}, **other_stats) elif mdl == 'AllConvNetStefOe': #batch_size_train = 16384 # 2**14 #batch_size_test = 16384 #batch_size_train = 2**10 # batch_size_train = 2**10 # batch_size_test = 2**10 batch_size_train = 32 batch_size_test = 124 ## batch_size = batch_size_train suffle_test = False ## AllConvNet only_1st_layer_bias = args.only_1st_layer_bias CHW = (3,32,32) dropout = args.use_dropout net = nn_mdls.AllConvNetStefOe(nc=len(CHW),dropout=dropout,only_1st_layer_bias=only_1st_layer_bias) ## nets.append(net) other_stats = dict({'only_1st_layer_bias': args.only_1st_layer_bias,'dropout':dropout}, **other_stats) expt_path = f'{expt_path}_dropout_{dropout}' elif mdl == 'AndyNet': #batch_size_train = 16384 # 2**14 #batch_size_test = 16384 #batch_size_train = 2**10 batch_size_train = 2**10 batch_size_test = 2**10 # batch_size_train = 32 # batch_size_test = 124 ## batch_size = batch_size_train suffle_test = False ## AndyNet #only_1st_layer_bias = args.only_1st_layer_bias ## TODO fix only_1st_layer_bias = args.only_1st_layer_bias CHW = (3,32,32) net = nn_mdls.get_AndyNet() ## nets.append(net) other_stats = dict({'only_1st_layer_bias': args.only_1st_layer_bias}, **other_stats) expt_path = f'{expt_path}' elif mdl == 'interpolate': suffle_test = True batch_size = 2**10 batch_size_train, batch_size_test = batch_size, batch_size iterations = inf # controls how many epochs to stop before returning the data set error #iterations = 1 # controls how many epochs to stop before returning the data set error ''' ''' path_nl = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_NL_polestar/net_27_April_sj_343_staid_1_seed_56134200848018679') path_rl_nl = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_RLNL_polestar/net_27_April_sj_345_staid_1_seed_57700439347820897') ''' restore nets''' net_nl = utils.restore_entire_mdl(path_nl) net_rlnl = utils.restore_entire_mdl(path_rl_nl) nets.append(net_nl) nets.append(net_rlnl) elif mdl == 'radius_flatness': suffle_test = True batch_size = 2**10 batch_size_train, batch_size_test = batch_size, batch_size iterations = 11 # controls how many epochs to stop before returning the data set error #iterations = inf # controls how many epochs to stop before returning the data set error other_stats = dict({'iterations':iterations},**other_stats) ''' load net ''' if args.net_name == 'NL': #path = os.path.join(results_root,'flatness_28_March_label_corrupt_prob_0.0_exptlabel_BoixNet_polestar_300_stand_natural_labels/net_28_March_206') path = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_NL_polestar/net_27_April_sj_343_staid_1_seed_56134200848018679') else: # RLNL #path = os.path.join(results_root,'flatness_28_March_label_corrupt_prob_0.0_exptlabel_re_train_RLBoixNet_noBN_polestar_150/net_28_March_18') path = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_RLNL_polestar/net_27_April_sj_345_staid_1_seed_57700439347820897') ''' restore nets''' net = utils.restore_entire_mdl(path) nets.append(net) store_net = False elif mdl == 'sharpness': suffle_test=False #doesn't matter ''' load net ''' if args.net_name == 'NL': #path = os.path.join(results_root,'flatness_28_March_label_corrupt_prob_0.0_exptlabel_BoixNet_polestar_300_stand_natural_labels/net_28_March_206') path = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_NL_polestar/net_27_April_sj_343_staid_1_seed_56134200848018679') path_adverserial_data = os.path.join('./data/sharpness_data_NL/','sdata_NL_net_27_April_sj_343_staid_1_seed_56134200848018679.npz') else: # RLNL #path = os.path.join(results_root,'flatness_28_March_label_corrupt_prob_0.0_exptlabel_re_train_RLBoixNet_noBN_polestar_150/net_28_March_18') path = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_RLNL_polestar/net_27_April_sj_345_staid_1_seed_57700439347820897') path_adverserial_data = os.path.join('./data/sharpness_data_RLNL/','sdata_RLNL_net_27_April_sj_345_staid_1_seed_57700439347820897.npz') ''' restore nets''' net = torch.load(path) nets.append(net) store_net = False elif mdl == 'divide_constant': ''' ''' # both false because we want low variation on the output of the error iterations = inf # controls how many epochs to stop before returning the data set error #iterations = 11 # controls how many epochs to stop before returning the data set error batch_size = 2**10 batch_size_train, batch_size_test = batch_size, batch_size shuffle_train = True suffle_test = False ''' load net ''' ## NL #path_nl = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_NL_polestar/net_27_April_sj_343_staid_1_seed_56134200848018679') #path_nl = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_SGD_ManyRuns_Momentum0.9/net_17_May_sj_641_staid_5_seed_31866864409272026_polestar-old') path_nl = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_MovieNL_lr_0.01_momentum_0.9/net_22_May_sj_1168_staid_1_seed_59937023958974481_polestar-old_epoch_173') ## RLNL #path_rlnl = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_RLNL_polestar/net_27_April_sj_345_staid_1_seed_57700439347820897') path_rlnl = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_MovieRLNLmdls_label_corruption0.5_lr_0.01_momentum_0.9/net_22_May_sj_1172_staid_1_seed_38150714758131256_polestar-old_epoch_148') ## net_nl = torch.load(path_nl) net_rlnl = torch.load(path_rlnl) ''' ''' print('NL') l2_norm_all_params(net_nl) print('RLNL') l2_norm_all_params(net_rlnl) ''' modify nets ''' W_nl = 1 W_rlnl = (get_norm(net_rlnl, l=2)/get_norm(net_nl, l=2)) # 2.284937620162964 W_rlnl = (10)**(1.0/3.0) #W_rlnl = 1/0.57775 #W_rlnl = 1/0.7185 #W_rlnl = 1/0.85925 #W_rlnl = 1 print(f'W_rlnl = {W_rlnl}') print(f'norm of weight BEFORE division: get_norm(net_nl,l=2)={get_norm(net_nl,l=2)}, get_norm(net_rlnl,l=2)={get_norm(net_rlnl,l=2)}') #net_nl = divide_params_by(W_nl, net_nl) #net_rlnl = divide_params_by(W_rlnl, net_rlnl) net_rlnl = divide_params_by_taking_bias_into_account(W=W_rlnl,net=net_rlnl) print(f'norm of weight AFTER division: get_norm(net_nl,l=2)={get_norm(net_nl,l=2)}, get_norm(net_rlnl,l=2)={get_norm(net_rlnl,l=2)}') nets.append(net_nl) nets.append(net_rlnl) other_stats = dict({'W_rlnl':W_rlnl,'W_nl':W_nl}) elif mdl == 'load_nl_and_rlnl': ''' load net ''' # NL #path = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_NL_polestar/net_27_April_sj_343_staid_1_seed_56134200848018679') path = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_MovieNL_lr_0.01_momentum_0.9/net_22_May_sj_1168_staid_1_seed_59937023958974481_polestar-old_epoch_173') net = torch.load(path) nets.append(net) # RLNL #path_rlnl = os.path.join(results_root,'flatness_27_April_label_corrupt_prob_0.0_exptlabel_GB_24_24_10_2C1FC_momentum_RLNL_polestar/net_27_April_sj_345_staid_1_seed_57700439347820897') path_rlnl = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_MovieRLNLmdls_label_corruption0.5_lr_0.01_momentum_0.9/net_22_May_sj_1172_staid_1_seed_38150714758131256_polestar-old_epoch_148') net_rlnl = torch.load(path_rlnl) nets.append(net_rlnl) other_stats = dict({'path': path, 'path_rlnl': path_rlnl}, **other_stats) elif mdl == 'load_one_net': # path = os.path.join(results_root, '/') ''' load net ''' ## 0.0001 path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0001_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_974_staid_1_seed_44940314088747654_polestar-old') ## 0.001 path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.001_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_967_staid_1_seed_1986409594254668_polestar-old') ## 0.01 path = os.path.join(results_root, 'flatness_June_label_corrupt_prob_0.01_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_976_staid_1_seed_34669758900780265_polestar-old') ## 0.1 path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.1_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_977_staid_1_seed_57003505407221650_polestar-old') ## 0.2 path = os.path.join(results_root, 'flatness_June_label_corrupt_prob_0.2_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_978_staid_1_seed_63479113068450657_polestar-old') ## 0.5 path = os.path.join(results_root, 'flatness_June_label_corrupt_prob_0.5_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_979_staid_1_seed_51183371945505111_polestar-old') ## 0.75 path = os.path.join(results_root, 'flatness_June_label_corrupt_prob_0.75_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_980_staid_1_seed_63292262317939652_polestar-old') ## 1.0 path = os.path.join(results_root, 'flatness_June_label_corrupt_prob_1.0_exptlabel_RLInits_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0/net_21_June_sj_981_staid_1_seed_34295360820373818_polestar-old') ''' load net ''' net = torch.load(path) nets.append(net) other_stats = dict({'path': path}, **other_stats) elif mdl == 'l2_norm_all_params': ''' load net ''' # path = os.path.join(results_root,'flatness_June_label_corrupt_sqprob_0.0_exptlabel_WeightDecay_lambda100_lr_0.1_momentum_0.0/net_1_June_sj_2833_staid_2_seed_45828051420330772_polestar-old') # path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_WeightDecay_lambda1_lr_0.1_momentum_0.0/net_1_June_sj_2830_staid_1_seed_53714812690274511_polestar-old') # path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_WeightDecay_lambda0.1_lr_0.1_momentum_0.0/net_1_June_sj_2835_staid_2_seed_66755608399194708_polestar-old') # path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_WeightDecay_lambda0.01_lr_0.1_momentum_0.0/net_1_June_sj_2832_staid_1_seed_47715620118836168_polestar-old') #path = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_WeightDecay_lambda0.1_lr_0.01_momentum_0.9/net_31_May_sj_2784_staid_1_seed_59165331201064855_polestar-old') #path = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_WeightDecay_lambda0.01_lr_0.01_momentum_0.9/net_31_May_sj_2792_staid_1_seed_42391375291583068_polestar-old') #path = os.path.join(results_root,'flatness_May_label_corrupt_prob_0.0_exptlabel_WeightDecay_lambda0.001_lr_0.01_momentum_0.9/net_31_May_sj_2793_staid_2_seed_47559284752010338_polestar-old') #path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_L2_squared_lambda1_lr_0.1_momentum_0.0/net_1_June_sj_2841_staid_2_seed_29441453139027048_polestar-old') #path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_L2_squared_lambda0.1_lr_0.1_momentum_0.0/net_1_June_sj_2839_staid_2_seed_35447208985369634_polestar-old') #path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_L2_squared_lambda0.01_lr_0.1_momentum_0.0/net_1_June_sj_2837_staid_2_seed_57556488720733908_polestar-old') #path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_L2_squared_lambda0.001_lr_0.1_momentum_0.0/net_1_June_sj_2848_staid_1_seed_48943421305461120_polestar-old') #path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_L2_squared_lambda0.0001_lr_0.1_momentum_0.0/net_1_June_sj_2850_staid_1_seed_2881772832480048_polestar-old') #path = os.path.join(results_root,'flatness_June_label_corrupt_prob_0.0_exptlabel_L2_squared_lambda0.00001_lr_0.1_momentum_0.0/net_1_June_sj_2852_staid_1_seed_24293440492629928_polestar-old') print(f'path = {path}') net = torch.load(path) ''' l2_norm_all_params ''' l2_norm_all_params(net) ''' evaluate data set ''' standardize = not args.dont_standardize_data # x - mu / std , [-1,+1] error_criterion = metrics.error_criterion criterion = torch.nn.CrossEntropyLoss() trainset, testset, classes = data_class.get_data_processors(data_path, args.label_corrupt_prob,dataset_type=args.data_set,standardize=standardize) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size_train, shuffle=shuffle_train,num_workers=num_workers) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size_test, shuffle=suffle_test,num_workers=num_workers) train_loss_epoch, train_error_epoch = evalaute_mdl_data_set(criterion, error_criterion, net,trainloader,device) test_loss_epoch, test_error_epoch = evalaute_mdl_data_set(criterion, error_criterion, net,testloader,device) print(f'[-1, -1], (train_loss: {train_loss_epoch}, train error: {train_error_epoch}) , (test loss: {test_loss_epoch}, test error: {test_error_epoch})') ''' end ''' nets.append(net) sys.exit() else: print('RESTORED FROM PRE-TRAINED NET') suffle_test = False ''' RESTORED PRE-TRAINED NET ''' # example name of file, os.path.join(results_root,expt_path,f'net_{day}_{month}_{seed}') # args.net_path = 'flatness_27_March_label_corrupt_prob_0_exptlabel_BoixNet_stand_600_OM/net_27_Match_64' path_to_mdl = args.mdl path = os.path.join(results_root,path_to_mdl) # net = utils.restore_entire_mdl(path) net = torch.load(path) nets.append(net) print(f'nets = {nets}') ''' cuda/gpu ''' for net in nets: net.to(device) nb_params = nn_mdls.count_nb_params(net) ''' stats collector ''' stats_collector = StatsCollector(net) ''' get data set ''' trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size_train, shuffle=shuffle_train, num_workers=num_workers) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size_test, shuffle=suffle_test, num_workers=num_workers) ''' Cross Entropy + Optmizer ''' lr = args.lr momentum = 0.9 ## Error/Loss criterions error_criterion = metrics.error_criterion criterion = torch.nn.CrossEntropyLoss() #criterion = torch.nn.MultiMarginLoss() #criterion = torch.nn.MSELoss(size_average=True) print(f'Training Algorithm = {args.train_alg}') if args.train_alg == 'SGD': optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) elif args.train_alg == 'Adam': optimizer = optim.Adam(net.parameters(), lr=lr) else: raise ValueError(f'Training alg not existent: {args.train_alg}') other_stats = dict({'nb_epochs':nb_epochs,'batch_size':batch_size,'mdl':mdl,'lr':lr,'momentum':momentum, 'seed':seed,'githash':githash},**other_stats) expt_path = f'{expt_path}_args.train_alg_{args.train_alg}_batch_train_{batch_size_train}_lr_{lr}_moment_{momentum}_epochs_{nb_epochs}' ''' scheduler ''' #milestones = [20, 30, 40] milestones = [200, 250, 300] #milestones = [700, 800, 900] #milestones = [1700, 1800, 1900] scheduler_gamma = args.decay_rate scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=scheduler_gamma) other_stats = dict({'milestones': milestones, 'scheduler_gamma': scheduler_gamma}, **other_stats) milestones_str = ','.join(str(m) for m in milestones) #expt_path = f'{expt_path}_scheduler_milestones_{milestones_str}_gamma_{gamma}' expt_path = f'{expt_path}_scheduler_gamma_{scheduler_gamma}' print(f'scheduler_gamma = {scheduler_gamma}') ''' Verify model you got has the right error''' train_loss_epoch, train_error_epoch = evalaute_mdl_data_set(criterion, error_criterion, net, trainloader, device) test_loss_epoch, test_error_epoch = evalaute_mdl_data_set(criterion, error_criterion, net, testloader, device) print(f'train_loss_epoch, train_error_epoch = {train_loss_epoch}, {train_error_epoch} \n test_loss_epoch, test_error_epoch = {test_loss_epoch}, {test_error_epoch}') ''' Is it over parametrized?''' overparametrized = len(trainset)<nb_params # N < W ? print(f'Model overparametrized? N, W = {len(trainset)} vs {nb_params}') print(f'Model overparametrized? N < W = {overparametrized}') other_stats = dict({'overparametrized':overparametrized,'nb_params':nb_params}, **other_stats) ''' report time for setup''' seconds_setup,minutes_setup,hours_setup = utils.report_times(setup_time,'setup') other_stats = dict({'seconds_setup': seconds_setup, 'minutes_setup': minutes_setup, 'hours_setup': hours_setup}, **other_stats) ''' Start Training ''' training_time = time.time() print(f'----\nSTART training: label_corrupt_prob={args.label_corrupt_prob},nb_epochs={nb_epochs},batch_size={batch_size},lr={lr},momentum={momentum},mdl={mdl},batch-norm={do_bn},nb_params={nb_params}') ## START TRAIN if args.train_alg == 'SGD' or args.train_alg == 'Adam': #iterations = 4 # the number of iterations to get a sense of test error, smaller faster larger more accurate. Grows as sqrt(n) though. iterations = inf ''' set up Trainer ''' if args.save_every_epoch: save_every_epoch = args.save_every_epoch trainer = Trainer(trainloader, testloader, optimizer, scheduler, criterion, error_criterion, stats_collector, device, expt_path,net_file_name,all_nets_folder,save_every_epoch,args.evalaute_mdl_data_set, reg_param=args.reg_param,p=args.Lp_norm) else: trainer = Trainer(trainloader,testloader, optimizer, scheduler, criterion,error_criterion, stats_collector, device,evalaute_mdl_data_set=args.evalaute_mdl_data_set,reg_param=args.reg_param,p=args.Lp_norm) last_errors = trainer.train_and_track_stats(net, nb_epochs,iterations) ''' Test the Network on the test data ''' train_loss_epoch, train_error_epoch, test_loss_epoch, test_error_epoch = last_errors print(f'train_loss_epoch={train_loss_epoch} \ntrain_error_epoch={train_error_epoch} \ntest_loss_epoch={test_loss_epoch} \ntest_error_epoch={test_error_epoch}') elif args.train_alg == 'pert': ''' batch sizes ''' batch_size_train, batch_size_test = 50*10**3, 10*10**3 ''' number of repetitions ''' nb_perturbation_trials = nb_epochs ''' noise level ''' nb_layers = len(list(net.parameters())) noise_level = args.noise_level perturbation_magnitudes = nb_layers*[noise_level] print(f'noise_level={noise_level}') ''' locate where to save it ''' folder_name_noise = f'noise_{perturbation_magnitudes[0]}' expt_path = os.path.join(expt_path,folder_name_noise) matlab_file_name = f'noise_{perturbation_magnitudes}_{matlab_file_name}' ## TODO collect by perburbing current model X number of times with current perturbation_magnitudes use_w_norm2 = args.not_pert_w_norm2 train_loss,train_error,test_loss,test_error = get_errors_for_all_perturbations(net,perturbation_magnitudes,use_w_norm2,device,nb_perturbation_trials,stats_collector,criterion,error_criterion,trainloader,testloader) print(f'noise_level={noise_level},train_loss,train_error,test_loss,test_error={train_loss},{train_error},{test_loss},{test_error}') other_stats = dict({'perturbation_magnitudes':perturbation_magnitudes}, **other_stats) elif args.train_alg == 'interpolate': ''' prints stats before interpolation''' print_evaluation_of_nets(net_nl, net_rlnl, criterion, error_criterion, trainloader, testloader, device, iterations) ''' do interpolation of nets''' nb_interpolations = nb_epochs interpolations = np.linspace(0,1,nb_interpolations) get_landscapes_stats_between_nets(net_nl,net_rlnl,interpolations, device,stats_collector,criterion,error_criterion,trainloader,testloader,iterations) ''' print stats of the net ''' other_stats = dict({'interpolations':interpolations},**other_stats) #print_evaluation_of_nets(net_nl, net_rlnl, criterion, error_criterion, trainloader, testloader, device, iterations) elif args.train_alg == 'brando_chiyuan_radius_inter': r_large = args.r_large ## check if this number is good nb_radius_samples = nb_epochs interpolations = np.linspace(0,1,nb_radius_samples) expt_path = os.path.join(expt_path+f'_RLarge_{r_large}') ''' ''' nb_dirs = args.nb_dirs stats_collector = StatsCollector(net,nb_dirs,nb_epochs) get_all_radius_errors_loss_list_interpolate(nb_dirs,net,r_large,interpolations,device,stats_collector,criterion,error_criterion,trainloader,testloader,iterations) other_stats = dict({'nb_dirs':nb_dirs,'interpolations':interpolations,'nb_radius_samples':nb_radius_samples,'r_large':r_large},**other_stats) elif args.train_alg == 'sharpness': ''' load the data set ''' print('About to load the data set') shuffle_train = True #batch_size = 2**10 batch_size = 2**5 batch_size_train, batch_size_test = batch_size, batch_size iterations = inf # controls how many epochs to stop before returning the data set error #eps = 2500/50000 eps = 1 / 50000 other_stats = dict({'iterations':iterations,'eps':eps},**other_stats) trainset,trainloader = data_class.load_only_train(path_adverserial_data,eps,batch_size_train,shuffle_train,num_workers) ''' three musketeers ''' print('Preparing the three musketeers') net_pert = copy.deepcopy(net) #nn_mdls.reset_parameters(net_pert) net_original = dont_train(net) #net_original = net initialize_to_zero(net_original) debug=False if debug: ## conv params nb_conv_layers=3 Fs = [24]*nb_conv_layers Ks = [5]*nb_conv_layers ## fc params FCs = [len(classes)] CHW = (3,32,32) net_pert = nn_mdls.GBoixNet(CHW,Fs,Ks,FCs,do_bn).to(device) print('Musketeers are prepared') ''' optimizer + criterion stuff ''' optimizer = optim.SGD(net_pert.parameters(), lr=lr, momentum=momentum) #optimizer = optim.Adam(net_pert.parameters(), lr=lr) error_criterion = metrics.error_criterion criterion = torch.nn.CrossEntropyLoss() #criterion = torch.nn.MultiMarginLoss() #criterion = torch.nn.MultiLabelMarginLoss() ''' Landscape Inspector ''' save_all_learning_curves = True save_all_perts = False nb_lambdas = 1 lambdas = np.linspace(1,10,nb_lambdas) print('Do Sharpness expt!') sharpness_inspector = LandscapeInspector(net_original,net_pert, nb_epochs,iterations, trainloader,testloader, optimizer, criterion,error_criterion, device, lambdas,save_all_learning_curves=save_all_learning_curves,save_all_perts=save_all_perts) sharpness_inspector.do_sharpness_experiment() elif args.train_alg == 'flatness_bs': ''' BS params ''' r_initial = 50 epsilon = args.epsilon ## check if this number is good # nb_radius_samples = nb_epochs could use this number as a cap of # iterations of BS expt_path = os.path.join(expt_path+f'_BS') ''' Do BS ''' precision = 0.001 nb_dirs = args.nb_dirs # stats_collector = StatsCollector(net,nb_dirs,nb_epochs) TODO rand_inspector = RandLandscapeInspector(epsilon,net,r_initial,device,criterion,error_criterion,trainloader,testloader,iterations) rand_inspector.get_faltness_radii_for_isotropic_directions(nb_dirs=nb_dirs,precision=precision) other_stats = dict({'nb_dirs':nb_dirs,'flatness_radii':rand_inspector.flatness_radii},**other_stats) elif args.train_alg == 'evaluate_nets': plot = False print('') iterations = inf print(f'W_nl = {W_nl}') print(f'W_rlnl = {W_rlnl}') ''' train errors ''' loss_nl_train, error_nl_train = evalaute_mdl_data_set(criterion, error_criterion, net_nl, trainloader, device, iterations) loss_rlnl_train, error_rlnl_train = evalaute_mdl_data_set(criterion,error_criterion,net_rlnl,trainloader,device,iterations) print(f'loss_nl_train, error_nl_train = {loss_nl_train, error_nl_train}') print(f'loss_rlnl_train, error_rlnl_train = {loss_rlnl_train, error_rlnl_train}') ''' test errors ''' loss_nl_test, error_nl_test = evalaute_mdl_data_set(criterion, error_criterion, net_nl, testloader, device, iterations) loss_rlnl_test, error_rlnl_test = evalaute_mdl_data_set(criterion,error_criterion,net_rlnl,testloader,device,iterations) print(f'loss_nl_test, error_nl_test = {loss_nl_test, error_nl_test}') print(f'loss_rlnl_test, error_rlnl_test = {loss_rlnl_test, error_rlnl_test}') ''' ''' store_results = False store_net = False # elif args.train_alg == 'reach_target_loss': # iterations = inf # precision = 0.00001 # ''' set target loss ''' # loss_rlnl_train, error_rlnl_train = evalaute_mdl_data_set(criterion, error_criterion, net_rlnl, trainloader,device, iterations) # target_train_loss = loss_rlnl_train # ''' do SGD ''' # trainer = Trainer(trainloader,testloader, optimizer,criterion,error_criterion, stats_collector, device) # last_errors = trainer.train_and_track_stats(net,nb_epochs,iterations=iterations,target_train_loss=target_train_loss,precision=precision) # ''' Test the Network on the test data ''' # train_loss_epoch, train_error_epoch, test_loss_epoch, test_error_epoch = last_errors # print(f'train_loss_epoch={train_loss_epoch} train_error_epoch={train_error_epoch}') # print(f'test_loss_epoch={test_loss_epoch} test_error_epoch={test_error_epoch}') # st() elif args.train_alg == 'no_train': print('NO TRAIN BRANCH') print(f'expt_path={expt_path}') utils.make_and_check_dir(expt_path) ''' save times ''' seconds_training, minutes_training, hours_training = utils.report_times(training_time,meta_str='training') other_stats = dict({'seconds_training': seconds_training, 'minutes_training': minutes_training, 'hours_training': hours_training}, **other_stats) seconds, minutes, hours = seconds_training+seconds_setup, minutes_training+minutes_setup, hours_training+hours_setup other_stats = dict({'seconds':seconds,'minutes':minutes,'hours':hours}, **other_stats) print(f'nb_epochs = {nb_epochs}') print(f'Finished Training, hours={hours}') print(f'seed = {seed}, githash = {githash}') ''' save results from experiment ''' store_results = not args.dont_save_expt_results print(f'ALL other_stats={other_stats}') if store_results: print(f'storing results!') matlab_path_to_filename = os.path.join(expt_path,matlab_file_name) save2matlab.save2matlab_flatness_expt(matlab_path_to_filename, stats_collector,other_stats=other_stats) ''' save net model ''' if store_net: print(f'saving final net mdl!') net_path_to_filename = os.path.join(expt_path,net_file_name) torch.save(net,net_path_to_filename) ''' check the error of net saved ''' loss_original, error_original = evalaute_mdl_data_set(criterion, error_criterion, net, trainloader,device) restored_net = utils.restore_entire_mdl(net_path_to_filename) loss_restored,error_restored = evalaute_mdl_data_set(criterion,error_criterion,restored_net,trainloader,device) print() print(f'net_path_to_filename = {net_path_to_filename}') print(f'loss_original={loss_original},error_original={error_original}\a') print(f'loss_restored={loss_restored},error_restored={error_restored}\a') ''' send e-mail ''' if hostname == 'polestar' or args.email: message = f'SLURM Job_id=MANUAL Name=flatness_expts.py Ended, ' \ f'Total Run time hours:{hours},minutes:{minutes},seconds:{seconds} COMPLETED, ExitCode [0-0]' utils.send_email(message,destination='*****@*****.**') ''' plot ''' if sj == 0 and plot: #TODO plot_utils.plot_loss_and_accuracies(stats_collector) plt.show()
def main(plot): start_time = time.time() ''' Directory names ''' path = '../pytorch_experiments/test_runs_flatness/keras_expt_April_19' filename = f'chance_plateau_{satid}' utils.make_and_check_dir(path) ''' experiment type ''' #expt = 'BoixNet' #expt = 'LiaoNet' expt = 'GBoixNet' #expt = 'debug' ''' declare variables ''' batch_size = 2**10 num_classes = 10 nb_epochs = 300 lr = 0.1 ''' load cifar ''' standardize = True (x_train, y_train), (x_test, y_test) = load_cifar10(num_classes, standardize=standardize) print(x_train[0, :]) ''' params for cnn''' print(f'expt = {expt}') if expt == 'BoixNet': nb_conv_layers = 2 nb_conv_filters = [32] * nb_conv_layers kernels = [(5, 5)] * nb_conv_layers nb_fc_layers = 3 nb_units_fcs = [512, 256, num_classes] elif expt == 'LiaoNet': nb_conv_layers, nb_fc_layers = 3, 1 nb_conv_filters = [32] * nb_conv_layers kernels = [(5, 5)] * nb_conv_layers nb_units_fcs = [num_classes] elif expt == 'GBoixNet': cnn_filename = f'keras_net_{satid}' nb_conv_layers, nb_fc_layers = 1, 2 nb_conv_filters = [22] * nb_conv_layers kernels = [(5, 5)] * nb_conv_layers nb_units_fcs = [30, num_classes] elif expt == 'debug': nb_conv_layers, nb_fc_layers = 1, 1 nb_conv_filters = [2] * nb_conv_layers kernels = [(10, 10)] * nb_conv_layers nb_units_fcs = [2, num_classes] CHW = x_train.shape[1:] # (3, 32, 32) ''' get model ''' cnn_n = model_convs_FCs(CHW, nb_conv_layers, nb_fc_layers, nb_conv_filters, kernels, nb_units_fcs) cnn_n.summary() compile_mdl_with_sgd(cnn_n, lr, weight_decay=0, momentum=0, nesterov=False) ''' Fit model ''' cnn = cnn_n.fit(x_train, y_train, batch_size=batch_size, epochs=nb_epochs, validation_data=(x_test, y_test), shuffle=True) seconds, minutes, hours = utils.report_times(start_time) print(f'\nFinished Training, hours={hours}\a') ''' save history and mdl ''' path_2_save = os.path.join(path, filename) print(f'path_2_save = {path_2_save}') print(f'does dir exist? {os.path.isdir(path)}') # save history with open(path_2_save, 'wb+') as file_pi: history = dict( { 'batch_size': batch_size, 'nb_epochs': nb_epochs, 'lr': lr, 'expt': expt }, **cnn.history) pickle.dump(history, file_pi) # save model cnn_n.save(os.path.join(path, cnn_filename)) ''' Plots ''' if plot: # Plots for training and testing process: loss and accuracy plt.figure(0) plt.plot(cnn.history['acc'], 'r') plt.plot(cnn.history['val_acc'], 'g') plt.xticks(np.arange(0, nb_epochs + 1, 2.0)) plt.rcParams['figure.figsize'] = (8, 6) plt.xlabel("Num of Epochs") plt.ylabel("Accuracy") plt.title("Training Accuracy vs Validation Accuracy") plt.legend(['train', 'validation']) plt.figure(1) plt.plot(cnn.history['loss'], 'r') plt.plot(cnn.history['val_loss'], 'g') plt.xticks(np.arange(0, nb_epochs + 1, 2.0)) plt.rcParams['figure.figsize'] = (8, 6) plt.xlabel("Num of Epochs") plt.ylabel("Loss") plt.title("Training Loss vs Validation Loss") plt.legend(['train', 'validation']) plt.show()
def main(plot=False): ''' date parameters setup''' today_obj = date.today() # contains datetime.date(year, month, day); accessible via .day etc day = today_obj.day month = calendar.month_name[today_obj.month] start_time = time.time() ''' ''' label_corrupt_prob = 0 results_root = './test_runs_flatness' expt_path = f'flatness_label_corrupt_prob_{label_corrupt_prob}_debug2' matlab_file_name = f'flatness_{day}_{month}' ''' ''' nb_epochs = 200 batch_size = 256 #batch_size_train,batch_size_test = batch_size,batch_size batch_size_train = batch_size batch_size_test = 256 data_path = './data' num_workers = 2 # how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process. ''' get data set ''' standardize = True trainset,trainloader, testset,testloader, classes = data_class.get_cifer_data_processors(data_path,batch_size_train,batch_size_test,num_workers,label_corrupt_prob,standardize=standardize) ''' get NN ''' mdl = 'cifar_10_tutorial_net' mdl = 'BoixNet' mdl = 'LiaoNet' ## print(f'model = {mdl}') if mdl == 'cifar_10_tutorial_net': do_bn = False net = nn_mdls.Net() elif mdl == 'BoixNet': do_bn=False ## conv params nb_filters1,nb_filters2 = 32, 32 kernel_size1,kernel_size2 = 5,5 ## fc params nb_units_fc1,nb_units_fc2,nb_units_fc3 = 512,256,len(classes) C,H,W = 3,32,32 net = nn_mdls.BoixNet(C,H,W,nb_filters1,nb_filters2, kernel_size1,kernel_size2, nb_units_fc1,nb_units_fc2,nb_units_fc3,do_bn) elif mdl == 'LiaoNet': do_bn=False nb_conv_layers=3 ## conv params Fs = [32]*nb_conv_layers Ks = [5]*nb_conv_layers ## fc params FC = len(classes) C,H,W = 3,32,32 net = nn_mdls.LiaoNet(C,H,W,Fs,Ks,FC,do_bn) # elif mdl == 'MMNISTNet': # net = MMNISTNet() if args.enable_cuda: net.cuda() nb_params = nn_mdls.count_nb_params(net) ''' Cross Entropy + Optmizer''' lr = 0.01 momentum = 0.0 #error_criterion = metrics.error_criterion error_criterion = metrics.error_criterion2 #criterion = torch.nn.CrossEntropyLoss() criterion = torch.nn.MultiMarginLoss() #loss = torch.nn.MSELoss(size_average=True) optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) ''' stats collector ''' stats_collector = tr_alg.StatsCollector(net,None,None) dynamic_stats = ['final_act',(np.zeros(10,nb_epochs),tr_alg.)] ''' Train the Network ''' print(f'----\nSTART training: label_corrupt_prob={label_corrupt_prob},nb_epochs={nb_epochs},batch_size={batch_size},lr={lr},mdl={mdl},batch-norm={do_bn},nb_params={nb_params}') overparametrized = len(trainset)<nb_params # N < W ? print(f'Model over parametrized? N, W = {len(trainset)} vs {nb_params}') print(f'Model over parametrized? N < W = {overparametrized}') # We simply have to loop over our data iterator, and feed the inputs to the network and optimize. #tr_alg.train_cifar(args, nb_epochs, trainloader,testloader, net,optimizer,criterion) train_loss_epoch, train_error_epoch, test_loss_epoch, test_error_epoch = tr_alg.train_and_track_stats2(args, nb_epochs, trainloader,testloader, net,optimizer,criterion,error_criterion, stats_collector) seconds,minutes,hours = utils.report_times(start_time) print(f'Finished Training, hours={hours}') ''' Test the Network on the test data ''' print(f'train_loss_epoch={train_loss_epoch} \ntrain_error_epoch={train_error_epoch} \ntest_loss_epoch={test_loss_epoch} \ntest_error_epoch={test_error_epoch}') ''' save results from experiment ''' other_stats = {'nb_epochs':nb_epochs,'batch_size':batch_size,'mdl':mdl,'lr':lr,'momentum':momentum} save2matlab.save2matlab_flatness_expt(results_root,expt_path,matlab_file_name, stats_collector,other_stats=other_stats) ''' save net model ''' path = os.path.join(results_root,expt_path,f'net_{day}_{month}') utils.save_entire_mdl(path,net) restored_net = utils.restore_entire_mdl(path) loss_restored,error_restored = tr_alg.evalaute_mdl_data_set(criterion,error_criterion,restored_net,testloader,args.enable_cuda) print(f'\nloss_restored={loss_restored},error_restored={error_restored}\a') ''' plot ''' if plot: #TODO plot_utils.plot_loss_and_accuracies(stats_collector) plt.show()
target_loss = 0.0044 normalizer = Normalizer(list_names, data_path, normalization_scheme, p, division_constant, data_set_type, type_standardize=type_standardize) #results = normalizer.extract_all_results_vs_test_errors(path_all_expts, target_loss) results = normalizer.get_hist_from_single_net(path_all_expts) ''' ''' path = os.path.join( path_all_expts, f'{RL_str}loss_vs_gen_errors_norm_{norm}_data_set_{data_set_type}') #path = os.path.join(path_all_expts, f'RL_corruption_1.0_loss_vs_gen_errors_norm_{norm}') #path = os.path.join(path_all_expts,f'loss_vs_gen_errors_norm_{norm}_final') scipy.io.savemat(path, results) ''' plot ''' #plt.scatter(train_all_losses,gen_all_errors) #plt.show() ''' cry ''' print('\a') if __name__ == '__main__': time_taken = time.time() main() seconds_setup, minutes_setup, hours_setup = utils.report_times(time_taken) print('end') print('\a')
def main(plotting=False,save=False): ''' setup''' start_time = time.time() np.set_printoptions(suppress=True) #Whether or not suppress printing of small floating point values using scientific notation (default False). ##dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU ''' pytorch dtype setup ''' # dtype_y = torch.LongTensor dtype_x = torch.FloatTensor dtype_y = torch.FloatTensor # dtype_x = torch.cuda.FloatTensor # dtype_y = torch.cuda.FloatTensor ''' date parameters setup''' today_obj = date.today() # contains datetime.date(year, month, day); accessible via .day etc day = today_obj.day month = calendar.month_name[today_obj.month] ''' Model to train setup param ''' #MDL_2_TRAIN='logistic_regression_vec_mdl' #MDL_2_TRAIN='logistic_regression_poly_mdl' MDL_2_TRAIN = 'regression_poly_mdl' #MDL_2_TRAIN = 'HBF' ''' data file names ''' truth_filename='' data_filename='' #data_filename = 'classification_manual' data_filename = 'regression_manual' ''' Folder for experiment ''' experiment_name = 'RedoFig5_Cheby' ########## ''' Regularization ''' ## #reg_type = 'VW' #reg_type = 'V2W_D3' reg_type = '' reg = 0 ''' Experiment LAMBDA experiment params ''' # expt_type = 'LAMBDAS' # N_lambdas = 50 # lb,ub = 0.01,10000 # one_over_lambdas = np.linspace(lb,ub,N_lambdas) # lambdas = list( 1/one_over_lambdas ) # lambdas = N_lambdas*[0.0] # nb_iterations = [int(1.4*10**6)] # repetitions = len(lambdas)*[15] ''' Experiment ITERATIONS experiment params ''' # expt_type = 'ITERATIONS' # N_iterations = 30 # lb,ub = 1,60*10**4 # lambdas = [0] # nb_iterations = [ int(i) for i in np.linspace(lb,ub,N_iterations)] # repetitions = len(nb_iterations)*[10] ''' Experiment DEGREE/MONOMIALS ''' expt_type='DEGREES' step_deg=1 lb_deg,ub_deg = 39,39 degrees = list(range(lb_deg,ub_deg+1,step_deg)) lambdas = [0] #nb_iterations = [int(2500000)] #nb_iterations = [int(1000000)] #nb_iterations = [int(5 * 10**6)] #nb_iterations = [int(1.1 * 10 ** 7)] repetitions = len(degrees)*[30] ''' Experiment Number of vector elements''' expt_type='NB_VEC_ELEMENTS' step=1 lb_vec,ub_vec = 30,30 nb_elements_vecs = list(range(lb_vec,ub_vec+1,step)) lambdas = [0] nb_iterations = [int(250000)] #nb_iterations = [int(2500)] repetitions = len(nb_elements_vecs)*[1] ''' Get setup for process to run ''' ps_params = NamedDict() # process params if expt_type == 'LAMBDAS': ps_params.degrees=[] ps_params.reg_lambda = dispatcher_code.get_hp_to_run(hyper_params=lambdas,repetitions=repetitions,satid=satid) ps_params.nb_iter = nb_iterations[0] #ps_params.prefix_experiment = f'it_{nb_iter}/lambda_{reg_lambda}_reg_{reg_type}' elif expt_type == 'ITERATIONS': ps_params.degrees=[] ps_params.reg_lambda = lambdas[0] ps_params.nb_iter = dispatcher_code.get_hp_to_run(hyper_params=nb_iterations,repetitions=repetitions,satid=satid) #ps_params.prefix_experiment = f'lambda_{reg_lambda}/it_{nb_iter}_reg_{reg_type}' elif expt_type == 'DEGREES': ps_params.reg_lambda = lambdas[0] ps_params.degree_mdl = dispatcher_code.get_hp_to_run(hyper_params=degrees,repetitions=repetitions,satid=satid) #ps_params.prefix_experiment = f'fig4_expt_lambda_{reg_lambda}_it_{nb_iter}/deg_{Degree_mdl}' hp_param = ps_params.degree_mdl elif expt_type == 'NB_VEC_ELEMENTS': ps_params.reg_lambda = lambdas[0] ps_params.nb_elements_vec = dispatcher_code.get_hp_to_run(hyper_params=nb_elements_vecs,repetitions=repetitions,satid=satid) ps_params.nb_iter = nb_iterations[0] #ps_params.prefix_experiment = f'it_{ps_params.nb_iter}/lambda_{ps_params.reg_lambda}_reg_{reg_type}' else: raise ValueError(f'Experiment type expt_type={expt_type} does not exist, try a different expt_type.') print(f'ps_params={ps_params}') ######## data set ''' Get data set''' if data_filename == 'classification_manual': N_train,N_val,N_test = 81,100,500 lb,ub = -1,1 w_target = np.array([1,1]) f_target = lambda x: np.int64( (np.dot(w_target,x) > 0).astype(int) ) Xtr,Ytr, Xv,Yv, Xt,Yt = data_class.get_2D_classification_data(N_train,N_val,N_test,lb,ub,f_target) elif data_filename == 'regression_manual': N_train,N_val,N_test = 9,81,100 lb,ub = -1,1 f_target = lambda x: np.sin(2*np.pi*4*x) Xtr,Ytr, Xv,Yv, Xt,Yt = data_reg.get_2D_regression_data_chebyshev_nodes(N_train,N_val,N_test,lb,ub,f_target) else: data = np.load( './data/{}'.format(data_filename) ) if 'lb' and 'ub' in data: data_lb, data_ub = data['lb'],data['ub'] else: raise ValueError('Error, go to code and fix lb and ub') N_train,N_test = Xtr.shape[0], Xt.shape[0] print(f'N_train={N_train}, N_test={N_test}') ######## ''' SGD params ''' #optimizer_mode = 'SGD_AND_PERTURB' optimizer_mode = 'SGD_train_then_pert' M = int(Xtr.shape[0]) #M = int(81) eta = 0.2 momentum = 0.0 nb_iter = nb_iterations[0] A = 0.0 ## logging_freq = 1 ''' MODEL ''' if MDL_2_TRAIN=='logistic_regression_vec_mdl': in_features=31 n_classes=1 bias=False mdl = mdl_lreg.get_logistic_regression_mdl(in_features,n_classes,bias) loss = torch.nn.CrossEntropyLoss(size_average=True) ''' stats collector ''' loss_collector = lambda mdl,X,Y: calc_loss(mdl,loss,X,Y) acc_collector = calc_accuracy acc_collector = calc_error stats_collector = tr_alg.StatsCollector(mdl, loss_collector,acc_collector) ''' make features for data ''' poly = PolynomialFeatures(in_features-1) Xtr,Xv,Xt = poly.fit_transform(Xtr), poly.fit_transform(Xv), poly.fit_transform(Xt) elif MDL_2_TRAIN == 'regression_poly_mdl': in_features = degrees[0]+1 mdl = mdl_lreg.get_logistic_regression_mdl(in_features, 1, bias=False) loss = torch.nn.MSELoss(size_average=True) ''' stats collector ''' loss_collector = lambda mdl, X, Y: calc_loss(mdl, loss, X, Y) acc_collector = loss_collector acc_collector = loss_collector stats_collector = tr_alg.StatsCollector(mdl, loss_collector, acc_collector) ''' make features for data ''' poly = PolynomialFeatures(in_features - 1) Xtr, Xv, Xt = poly.fit_transform(Xtr), poly.fit_transform(Xv), poly.fit_transform(Xt) elif MDL_2_TRAIN=='HBF': bias=True D_in, D_out = Xtr.shape[0], Ytr.shape[1] ## RBF std = (Xtr[1] - Xtr[0])/ 0.8 # less than half the avg distance #TODO use np.mean centers=Xtr mdl = hkm.OneLayerHBF(D_in,D_out, centers=centers,std=std, train_centers=False,train_std=False) mdl[0].weight.data.fill_(0) mdl[0].bias.data.fill_(0) loss = torch.nn.MSELoss(size_average=True) ''' stats collector ''' loss_collector = lambda mdl,X,Y: tr_alg.calc_loss(mdl,loss,X,Y) acc_collector = loss_collector ''' dynamic stats collector ''' c_pinv = hkm.get_rbf_coefficients(X=Xtr,centers=Xtr,Y=Ytr,std=std) def diff_GD_vs_PINV(storer, i, mdl, Xtr,Ytr,Xv,Yv,Xt,Yt): c_pinv_torch = torch.FloatTensor( c_pinv ) diff_GD_pinv = (mdl.C.weight.data.t() - c_pinv_torch).norm(2) storer.append(diff_GD_pinv) dynamic_stats = NamedDict(diff_GD_vs_PINV=([],diff_GD_vs_PINV)) ## stats_collector = tr_alg.StatsCollector(mdl, loss_collector,acc_collector,dynamic_stats=dynamic_stats) else: raise ValueError(f'MDL_2_TRAIN={MDL_2_TRAIN}') ''' TRAIN ''' perturbfreq = 1.1 * 10**5 perturb_magnitude = 0.45 if optimizer_mode =='SGD_AND_PERTURB': ## momentum = 0.0 optim = torch.optim.SGD(mdl.parameters(), lr=eta, momentum=momentum) ## reg_lambda = ps_params.reg_lambda tr_alg.SGD_perturb(mdl, Xtr,Ytr,Xv,Yv,Xt,Yt, optim,loss, M,eta,nb_iter,A ,logging_freq, dtype_x,dtype_y, perturbfreq,perturb_magnitude, reg=reg,reg_lambda=reg_lambda, stats_collector=stats_collector) elif optimizer_mode == 'SGD_train_then_pert': iterations_switch_mode = 1 # never perturb #iterations_switch_mode = nb_iter # always perturb iterations_switch_mode = nb_iter/2 # perturb for half print(f'iterations_switch_mode={iterations_switch_mode}') ## optimizer = torch.optim.SGD(mdl.parameters(), lr=eta, momentum=momentum) ## reg_lambda = ps_params.reg_lambda tr_alg.SGD_pert_then_train(mdl, Xtr,Ytr,Xv,Yv,Xt,Yt, optimizer,loss, M,nb_iter ,logging_freq ,dtype_x,dtype_y, perturbfreq,perturb_magnitude, iterations_switch_mode, reg,reg_lambda, stats_collector) else: raise ValueError(f'MDL_2_TRAIN={MDL_2_TRAIN} not implemented') seconds,minutes,hours = utils.report_times(start_time) ''' Plots and Print statements''' print('\n----\a\a') print(f'some SGD params: batch_size={M}, eta={eta}, nb_iterations={nb_iter}') if save: ''' save experiment results to maltab ''' experiment_results=stats_collector.get_stats_dict() experiment_results=NamedDict(seconds=seconds,minutes=minutes,hours=hours,**experiment_results) save2matlab.save_experiment_results_2_matlab(experiment_results=experiment_results, root_path=f'./test_runs_flatness3', experiment_name=experiment_name, training_config_name=f'nb_iterations_{nb_iterations[0]}_N_train_{Xtr.shape[0]}_N_test_{Xt.shape[0]}_batch_size_{M}_perturb_freq_{perturbfreq}_perturb_magnitude_{perturb_magnitude}_momentum_{momentum}_iterations_switch_mode_{iterations_switch_mode}', main_experiment_params=f'{expt_type}_lambda_{ps_params.reg_lambda}_it_{nb_iter}_reg_{reg_type}', expt_type=f'expt_type_{expt_type}_{hp_param}', matlab_file_name=f'satid_{satid}_sid_{sj}_{month}_{day}' ) if MDL_2_TRAIN=='HBF': ''' print statements R/HBF''' print(f'distance_btw_data_points={Xtr[1] - Xtr[0]}') print(f'std={std}') print(f'less than half the average distance?={(std < (Xtr[1] - Xtr[0])/2)}') beta = (1.0/std)**2 rank = np.linalg.matrix_rank( np.exp( -beta*hkm.euclidean_distances_manual(x=Xtr,W=centers.T) ) ) print(f'rank of Kernel matrix = Rank(K) = {rank}') ''' plots for R/HBF''' f_mdl = lambda x: mdl( Variable(torch.FloatTensor(x),requires_grad=False) ).data.numpy() f_pinv = lambda x: hkm.f_rbf(x,c=c_pinv,centers=Xtr,std=std) f_target = f_target iterations = np.array(range(0,nb_iter)) N_denseness = 1000 legend_hyper_params=f'N_train={Xtr.shape[0]},N_test={Xt.shape[0]},batch-size={M},learning step={eta},# iterations = {nb_iter} momentum={momentum}, Model=Gaussian, # centers={centers.shape[0]}, std={std[0]}' ''' PLOT ''' ## plots plot_utils.plot_loss_errors(iterations,stats_collector,test_error_pinv=data_utils.l2_np_loss(f_pinv(Xt),Yt),legend_hyper_params=legend_hyper_params) plot_utils.visualize_1D_reconstruction(lb,ub,N_denseness, f_mdl,f_target=f_target,f_pinv=f_pinv,X=Xtr,Y=Ytr,legend_data_set='Training data points') plot_utils.plot_sgd_vs_pinv_distance_during_training(iterations,stats_collector) #plot_utils.print_gd_vs_pinv_params(mdl,c_pinv) plt.show() elif MDL_2_TRAIN=='logistic_regression_vec_mdl': ''' arguments for plotting things ''' f_mdl = lambda x: mdl( Variable(torch.FloatTensor(x),requires_grad=False) ).data.numpy() f_target = lambda x: -1*(w_target[0]/w_target[1])*x iterations = np.array(range(0,nb_iter)) N_denseness = 1000 legend_hyper_params=f'N_train={Xtr.shape[0]},N_test={Xt.shape[0]},batch-size={M},learning step={eta},# iterations = {nb_iter} momentum={momentum}, Model=Logistic Regression' ''' PLOT ''' ## plots plot_utils.plot_loss_errors(iterations,stats_collector,legend_hyper_params=legend_hyper_params) plot_utils.plot_loss_classification_errors(iterations,stats_collector,legend_hyper_params=legend_hyper_params) plot_utils.visualize_classification_data_learned_planes_2D(lb,ub,N_denseness,Xtr,Ytr,f_mdl,f_target) plot_utils.plot_weight_norm_vs_iterations(iterations,stats_collector.w_norms[0]) plt.show() if plotting: legend_hyper_params = f'N_train={Xtr.shape[0]},N_test={Xt.shape[0]},batch-size={M},learning step={eta},# iterations = {nb_iter} momentum={momentum}, Model=Regression' iterations = np.array(range(0, nb_iter)) plot_utils.plot_loss_errors(iterations, stats_collector, legend_hyper_params=legend_hyper_params) plot_utils.plot_weight_norm_vs_iterations(iterations, stats_collector.w_norms[0]) plt.show()