Пример #1
0
def geometry_dist(obj, recon_obj):
    ori_obbs_np = torch.cat([item.view(1, -1) for item in obj.boxes(leafs_only=True)], dim=0).cpu().numpy()
    ori_mesh_v, ori_mesh_f = utils.gen_obb_mesh(ori_obbs_np)
    ori_pc_sample = utils.sample_pc(ori_mesh_v, ori_mesh_f)
    recon_obbs_np = torch.cat([item.view(1, -1) for item in recon_obj.boxes(leafs_only=True)], dim=0).cpu().numpy()
    recon_mesh_v, recon_mesh_f = utils.gen_obb_mesh(recon_obbs_np)
    recon_pc_sample = utils.sample_pc(recon_mesh_v, recon_mesh_f)
    cd1, cd2 = chamfer_loss(
        torch.tensor(ori_pc_sample, dtype=torch.float32).view(1, -1, 3),
        torch.tensor(recon_pc_sample, dtype=torch.float32).view(1, -1, 3))
    cd = ((cd1.sqrt().mean() + cd2.sqrt().mean()) / 2).item()
    return cd
Пример #2
0
def compute_binary_diff(pred_node):
    if pred_node.is_leaf:
        return 0, 0
    else:
        binary_diff = 0; binary_tot = 0;

        # all children
        for cnode in pred_node.children:
            cur_binary_diff, cur_binary_tot = compute_binary_diff(cnode)
            binary_diff += cur_binary_diff
            binary_tot += cur_binary_tot

        # current node
        if pred_node.edges is not None:
            for edge in pred_node.edges:
                pred_part_a_id = edge['part_a']
                obb1 = pred_node.children[pred_part_a_id].box.cpu().numpy()
                obb_quat1 = pred_node.children[pred_part_a_id].get_box_quat().cpu().numpy()
                mesh_v1, mesh_f1 = utils.gen_obb_mesh(obb1)
                pc1 = utils.sample_pc(mesh_v1, mesh_f1, n_points=500)
                pc1 = torch.tensor(pc1, dtype=torch.float32, device=device)
                pred_part_b_id = edge['part_b']
                obb2 = pred_node.children[pred_part_b_id].box.cpu().numpy()
                obb_quat2 = pred_node.children[pred_part_b_id].get_box_quat().cpu().numpy()
                mesh_v2, mesh_f2 = utils.gen_obb_mesh(obb2)
                pc2 = utils.sample_pc(mesh_v2, mesh_f2, n_points=500)
                pc2 = torch.tensor(pc2, dtype=torch.float32, device=device)
                if edge['type'] == 'ADJ':
                    dist1, dist2 = chamferLoss(pc1.view(1, -1, 3), pc2.view(1, -1, 3))
                    binary_diff += (dist1.sqrt().min().item() + dist2.sqrt().min().item()) / 2
                elif 'SYM' in edge['type']:
                    if edge['type'] == 'TRANS_SYM':
                        mat1to2, _ = compute_sym.compute_trans_sym(obb_quat1.reshape(-1), obb_quat2.reshape(-1))
                    elif edge['type'] == 'REF_SYM':
                        mat1to2, _ = compute_sym.compute_ref_sym(obb_quat1.reshape(-1), obb_quat2.reshape(-1))
                    elif edge['type'] == 'ROT_SYM':
                        mat1to2, _ = compute_sym.compute_rot_sym(obb_quat1.reshape(-1), obb_quat2.reshape(-1))
                    else:
                        assert 'ERROR: unknown symmetry type: %s' % edge['type']
                    mat1to2 = torch.tensor(mat1to2, dtype=torch.float32, device=device)
                    transformed_pc1 = pc1.matmul(torch.transpose(mat1to2[:, :3], 0, 1)) + \
                            mat1to2[:, 3].unsqueeze(dim=0).repeat(pc1.size(0), 1)
                    dist1, dist2 = chamferLoss(transformed_pc1.view(1, -1, 3), pc2.view(1, -1, 3))
                    loss = (dist1.sqrt().mean() + dist2.sqrt().mean()) / 2
                    binary_diff += loss.item()
                else:
                    assert 'ERROR: unknown symmetry type: %s' % edge['type']
                binary_tot += 1

        return binary_diff, binary_tot
def convert_to_structurenet_format(csg, boxes):
    global idx
    sem_name = csg['name']
    if 'box_id' in csg:
        out = dict({
            'box_id': csg['box_id'],
            'id': idx,
            'label': sem_name,
            'box': boxes[csg['box_id']].flatten().tolist(),
        })
        idx += 1
        v, f = utils.gen_obb_mesh(np.reshape(boxes[csg['box_id']], [1, -1]))
        pc = utils.sample_pc(v, f)
    else:
        children = []
        cpcs = []
        for citem in csg['parts']:
            cnode, cpc = convert_to_structurenet_format(citem, boxes)
            children.append(cnode)
            cpcs.append(cpc)
        pc = np.concatenate(cpcs, axis=0)
        box = utils.fit_box(pc)
        out = dict({
            'id': idx,
            'label': sem_name,
            'box': box.tolist(),
            'children': children,
        })
    return out, pc
Пример #4
0
def compute_gen_cd_numbers(in_dir, data_path, object_list, shapediff_topk,
                           shapediff_metric, self_is_neighbor, tot_shape):
    chamfer_loss = ChamferDistance()

    data_features = [
        'object', 'name', 'neighbor_diffs', 'neighbor_objs', 'neighbor_names'
    ]
    dataset = PartNetShapeDiffDataset(data_path, object_list, data_features,
                                      shapediff_topk, shapediff_metric,
                                      self_is_neighbor)

    tot_gen = 100
    bar = ProgressBar()
    quality = 0.0
    coverage = 0.0
    for i in bar(range(tot_shape)):
        obj, obj_name, neighbor_diffs, neighbor_objs, neighbor_names = dataset[
            i]

        mat = np.zeros((shapediff_topk, tot_gen), dtype=np.float32)
        gt_pcs = []
        for ni in range(shapediff_topk):
            obbs_np = torch.cat([
                item.view(1, -1)
                for item in neighbor_objs[ni].boxes(leafs_only=True)
            ],
                                dim=0).cpu().numpy()
            mesh_v, mesh_f = utils.gen_obb_mesh(obbs_np)
            pc_sample = utils.sample_pc(mesh_v, mesh_f)
            gt_pcs.append(np.expand_dims(pc_sample, axis=0))
        gt_pcs = np.concatenate(gt_pcs, axis=0)
        gt_pcs = torch.from_numpy(gt_pcs).float().cuda()

        for i in range(tot_gen):
            obj = PartNetDataset.load_object(
                os.path.join(in_dir, obj_name, 'obj2-%03d.json' % i))
            obbs_np = torch.cat(
                [item.view(1, -1) for item in obj.boxes(leafs_only=True)],
                dim=0).cpu().numpy()
            mesh_v, mesh_f = utils.gen_obb_mesh(obbs_np)
            gen_pc = utils.sample_pc(mesh_v, mesh_f)
            gen_pc = np.tile(np.expand_dims(gen_pc, axis=0),
                             [shapediff_topk, 1, 1])
            gen_pc = torch.from_numpy(gen_pc).float().cuda()
            d1, d2 = chamfer_loss(gt_pcs.cuda(), gen_pc)
            mat[:, i] = (d1.sqrt().mean(dim=1) +
                         d2.sqrt().mean(dim=1)).cpu().numpy() / 2

        quality += mat.min(axis=0).mean()
        coverage += mat.min(axis=1).mean()
        np.save(os.path.join(in_dir, obj_name, 'cd_stats.npy'), mat)

    quality /= tot_shape
    coverage /= tot_shape
    print('mean cd quality: %.5f' % quality)
    print('mean cd coverage: %.5f' % coverage)
    print('q + c: %.5f' % (quality + coverage))
    with open(
            os.path.join(in_dir,
                         'neighbor_%s_cd_stats.txt' % shapediff_metric),
            'w') as fout:
        fout.write('mean cd quality: %.5f\n' % quality)
        fout.write('mean cd coverage: %.5f\n' % coverage)
        fout.write('q + c: %.5f\n' % (quality + coverage))
Пример #5
0
        # structure diff and edge accuracy
        sd = compute_struct_diff(obj.root, recon_obj.root)
        sd = sd / len(obj.root.boxes())
        structure_dists.append(sd)

        # save original and reconstructed object
        os.mkdir(os.path.join(result_dir, obj_name))
        orig_output_filename = os.path.join(result_dir, obj_name, 'orig.json')
        recon_output_filename = os.path.join(result_dir, obj_name, 'recon.json')
        PartNetDataset.save_object(obj=obj, fn=orig_output_filename)
        PartNetDataset.save_object(obj=recon_obj, fn=recon_output_filename)

        # chamfer distance
        ori_obbs_np = torch.cat([item.view(1, -1) for item in obj.boxes(leafs_only=True)], dim=0).cpu().numpy()
        ori_mesh_v, ori_mesh_f = utils.gen_obb_mesh(ori_obbs_np)
        ori_pc_sample = utils.sample_pc(ori_mesh_v, ori_mesh_f)
        print(ori_pc_sample.shape)
        recon_obbs_np = torch.cat([item.view(1, -1) for item in recon_obj.boxes(leafs_only=True)], dim=0).cpu().numpy()
        recon_mesh_v, recon_mesh_f = utils.gen_obb_mesh(recon_obbs_np)
        recon_pc_sample = utils.sample_pc(recon_mesh_v, recon_mesh_f)
        print(recon_pc_sample.shape)
        cd1, cd2 = chamferLoss(torch.tensor(ori_pc_sample, dtype=torch.float32).view(1, -1, 3), 
                torch.tensor(recon_pc_sample, dtype=torch.float32).view(1, -1, 3))
        cd = ((cd1.sqrt().mean() + cd2.sqrt().mean()) / 2).item()
        chamfer_dists.append(cd)

        stat_filename = os.path.join(result_dir, obj_name, 'stats.txt')
        with open(stat_filename, 'w') as stat_file:
            print(f'box pc chamfer distance: {cd}', file=stat_file)
            print(f'structure distance: {sd}', file=stat_file)
Пример #6
0
# enumerate over all training shapes
num_shape = len(dataset)
n_points = 2048

print('Creating point clouds ...')
pcs = np.zeros((num_shape, n_points, 3), dtype=np.float32)
objs = []
names = []
bar = ProgressBar()
for i in bar(range(num_shape)):
    obj, name = dataset[i]
    objs.append(obj)
    names.append(name)
    obbs = torch.cat([item.view(1, -1) for item in obj.boxes(leafs_only=True)], dim=0).cpu().numpy()
    mesh_v, mesh_f = utils.gen_obb_mesh(obbs)
    pcs[i] = utils.sample_pc(mesh_v, mesh_f, n_points=n_points)

pcs = torch.tensor(pcs, dtype=torch.float32, device=device)

#np.save(os.path.join(out_dir, 'sd-%d.npy'%shape_id), sd_mat)
print('Computing distance ...')
bar = ProgressBar()
for i in bar(range(num_shape)):
    pc1 = pcs[i:i+1].repeat(num_shape, 1, 1)
    cd1, cd2 = chamferLoss(pc1, pcs)
    dists = ((cd1.sqrt().mean(1) + cd2.sqrt().mean(1)) / 2).cpu().numpy()

    np.save(
        os.path.join(out_dir, names[i]+'.npy'),
        {'dists': dists, 'names': names})
Пример #7
0
def compute_struct_diff(gt_node, pred_node):
    if gt_node.is_leaf:
        if pred_node.is_leaf:
            return 0, 0, 0, 0, 0, 0
        else:
            return len(pred_node.boxes())-1, 0, 0, pred_node.get_subtree_edge_count(), 0, 0
    else:
        if pred_node.is_leaf:
            return len(gt_node.boxes())-1, 0, gt_node.get_subtree_edge_count() * 2, 0, 0, 0
        else:
            gt_sem = set([node.label for node in gt_node.children])
            pred_sem = set([node.label for node in pred_node.children])
            intersect_sem = set.intersection(gt_sem, pred_sem)

            gt_cnodes_per_sem = dict()
            for node_id, gt_cnode in enumerate(gt_node.children):
                if gt_cnode.label in intersect_sem:
                    if gt_cnode.label not in gt_cnodes_per_sem:
                        gt_cnodes_per_sem[gt_cnode.label] = []
                    gt_cnodes_per_sem[gt_cnode.label].append(node_id)

            pred_cnodes_per_sem = dict()
            for node_id, pred_cnode in enumerate(pred_node.children):
                if pred_cnode.label in intersect_sem:
                    if pred_cnode.label not in pred_cnodes_per_sem:
                        pred_cnodes_per_sem[pred_cnode.label] = []
                    pred_cnodes_per_sem[pred_cnode.label].append(node_id)

            matched_gt_idx = []; matched_pred_idx = []; matched_gt2pred = np.zeros((conf.max_child_num), dtype=np.int32)
            for sem in intersect_sem:
                gt_boxes = torch.cat([gt_node.children[cid].get_box_quat() for cid in gt_cnodes_per_sem[sem]], dim=0).to(device)
                pred_boxes = torch.cat([pred_node.children[cid].get_box_quat() for cid in pred_cnodes_per_sem[sem]], dim=0).to(device)

                num_gt = gt_boxes.size(0)
                num_pred = pred_boxes.size(0)

                if num_gt == 1 and num_pred == 1:
                    cur_matched_gt_idx = [0]
                    cur_matched_pred_idx = [0]
                else:
                    gt_boxes_tiled = gt_boxes.unsqueeze(dim=1).repeat(1, num_pred, 1)
                    pred_boxes_tiled = pred_boxes.unsqueeze(dim=0).repeat(num_gt, 1, 1)
                    dmat = boxLoss(gt_boxes_tiled.view(-1, 10), pred_boxes_tiled.view(-1, 10)).view(-1, num_gt, num_pred).cpu()
                    _, cur_matched_gt_idx, cur_matched_pred_idx = utils.linear_assignment(dmat)

                for i in range(len(cur_matched_gt_idx)):
                    matched_gt_idx.append(gt_cnodes_per_sem[sem][cur_matched_gt_idx[i]])
                    matched_pred_idx.append(pred_cnodes_per_sem[sem][cur_matched_pred_idx[i]])
                    matched_gt2pred[gt_cnodes_per_sem[sem][cur_matched_gt_idx[i]]] = pred_cnodes_per_sem[sem][cur_matched_pred_idx[i]]

            struct_diff = 0.0; edge_both = 0; edge_gt = 0; edge_pred = 0;
            gt_binary_diff = 0.0; gt_binary_tot = 0;
            for i in range(len(gt_node.children)):
                if i not in matched_gt_idx:
                    struct_diff += len(gt_node.children[i].boxes())
                    edge_gt += gt_node.children[i].get_subtree_edge_count() * 2

            for i in range(len(pred_node.children)):
                if i not in matched_pred_idx:
                    struct_diff += len(pred_node.children[i].boxes())
                    edge_pred += pred_node.children[i].get_subtree_edge_count()

            for i in range(len(matched_gt_idx)):
                gt_id = matched_gt_idx[i]
                pred_id = matched_pred_idx[i]
                cur_struct_diff, cur_edge_both, cur_edge_gt, cur_edge_pred, cur_gt_binary_diff, cur_gt_binary_tot = compute_struct_diff(gt_node.children[gt_id], pred_node.children[pred_id])
                gt_binary_diff += cur_gt_binary_diff
                gt_binary_tot += cur_gt_binary_tot
                struct_diff += cur_struct_diff
                edge_both += cur_edge_both
                edge_gt += cur_edge_gt
                edge_pred += cur_edge_pred
                pred_node.children[pred_id].part_id = gt_node.children[gt_id].part_id

            if pred_node.edges is not None:
                edge_pred += len(pred_node.edges)

            if gt_node.edges is not None:
                edge_gt += len(gt_node.edges) * 2
                pred_edges = np.zeros((conf.max_child_num, conf.max_child_num, len(conf.edge_types)), dtype=np.bool)
                for edge in pred_node.edges:
                    pred_part_a_id = edge['part_a']
                    pred_part_b_id = edge['part_b']
                    edge_type_id = conf.edge_types.index(edge['type'])
                    pred_edges[pred_part_a_id, pred_part_b_id, edge_type_id] = True

                for edge in gt_node.edges:
                    gt_part_a_id = edge['part_a']
                    gt_part_b_id = edge['part_b']
                    edge_type_id = conf.edge_types.index(edge['type'])
                    if gt_part_a_id in matched_gt_idx and gt_part_b_id in matched_gt_idx:
                        pred_part_a_id = matched_gt2pred[gt_part_a_id]
                        pred_part_b_id = matched_gt2pred[gt_part_b_id]
                        edge_both += pred_edges[pred_part_a_id, pred_part_b_id, edge_type_id]
                        edge_both += pred_edges[pred_part_b_id, pred_part_a_id, edge_type_id]

                        # gt edges eval
                        obb1 = pred_node.children[pred_part_a_id].box.cpu().numpy()
                        obb_quat1 = pred_node.children[pred_part_a_id].get_box_quat().cpu().numpy()
                        mesh_v1, mesh_f1 = utils.gen_obb_mesh(obb1)
                        pc1 = utils.sample_pc(mesh_v1, mesh_f1, n_points=500)
                        pc1 = torch.tensor(pc1, dtype=torch.float32, device=device)
                        obb2 = pred_node.children[pred_part_b_id].box.cpu().numpy()
                        obb_quat2 = pred_node.children[pred_part_b_id].get_box_quat().cpu().numpy()
                        mesh_v2, mesh_f2 = utils.gen_obb_mesh(obb2)
                        pc2 = utils.sample_pc(mesh_v2, mesh_f2, n_points=500)
                        pc2 = torch.tensor(pc2, dtype=torch.float32, device=device)
                        if edge_type_id == 0: # ADJ
                            dist1, dist2 = chamferLoss(pc1.view(1, -1, 3), pc2.view(1, -1, 3))
                            gt_binary_diff += (dist1.sqrt().min().item() + dist2.sqrt().min().item()) / 2
                        else: # SYM
                            if edge_type_id == 2: # TRANS_SYM
                                mat1to2, _ = compute_sym.compute_trans_sym(obb_quat1.reshape(-1), obb_quat2.reshape(-1))
                            elif edge_type_id == 3: # REF_SYM
                                mat1to2, _ = compute_sym.compute_ref_sym(obb_quat1.reshape(-1), obb_quat2.reshape(-1))
                            elif edge_type_id == 1: # ROT_SYM
                                mat1to2, _ = compute_sym.compute_rot_sym(obb_quat1.reshape(-1), obb_quat2.reshape(-1))
                            else:
                                assert 'ERROR: unknown symmetry type: %s' % edge['type']
                            mat1to2 = torch.tensor(mat1to2, dtype=torch.float32, device=device)
                            transformed_pc1 = pc1.matmul(torch.transpose(mat1to2[:, :3], 0, 1)) + \
                                    mat1to2[:, 3].unsqueeze(dim=0).repeat(pc1.size(0), 1)
                            dist1, dist2 = chamferLoss(transformed_pc1.view(1, -1, 3), pc2.view(1, -1, 3))
                            loss = (dist1.sqrt().mean() + dist2.sqrt().mean()) / 2
                            gt_binary_diff += loss.item()
                        gt_binary_tot += 1
            
            return struct_diff, edge_both, edge_gt, edge_pred, gt_binary_diff, gt_binary_tot