def main(): filename = './origin_data/bugreports.xml' path = './bug_reports' bugslist = utils.read_xml(filename) # print(bugslist) label = utils.read_label('./origin_data/goldset.txt') # print(label) samples, ids = utils.get_content(bugslist) # print(samples) num_word_list, numword = utils.count_word(samples) # print(len(num_word_list)) # for i in num_word_list: # num_sentence.append(len(i)) utils.savefile(samples) # print(num_sentence) results = textrank.bugsum(path, numword, num_word_list) print(len(i) for i in results) # extra_ids = index2id(results,ids) # print(len(extra_ids)) pred = eval.index2pred(results, ids) y = eval.label2y(label, ids) mean_acc, mean_pr, mean_re, mean_f1 = eval.evaluate(y, pred) print('mean_acc, mean_pr, mean_re, mean_f1', mean_acc, mean_pr, mean_re, mean_f1)
def canais(): librtmpwindow() info_servidores() nrcanais = 62 canaison = [] empty = 'nada' #GA("None","listacanais") if selfAddon.getSetting("prog-lista3") == "true": mensagemprogresso.create('TV Portuguesa', 'A carregar listas de programação.', 'Por favor aguarde.') mensagemprogresso.update(0) if mensagemprogresso.iscanceled(): sys.exit(0) programas = p_todos() mensagemprogresso.close() else: programas = [] sintomecomsorte() if activado == True: addCanal("[B]Lista Completa[/B]", empty, 16, tvporpath + art + 'gravador-ver1.png', nrcanais, '') addDir("[B][COLOR white]Informações[/COLOR][/B]", 'nada', 1, tvporpath + art + 'defs-ver2.png', 1, 'Clique aqui para voltar ao menu principal.', True) if selfAddon.getSetting("listas-pessoais") == "true": addDir("[B][COLOR white]Listas Pessoais[/COLOR][/B]", 'nada', 6, tvporpath + art + 'listas-ver2.png', 1, 'Outras listas de canais criadas pela comunidade.', True) if selfAddon.getSetting("radios") == "true": addDir("[B][COLOR white]Radios[/COLOR][/B]", 'nada', 19, tvporpath + art + 'radios-v1.png', 1, 'Oiça comodamente radios nacionais.', True) if selfAddon.getSetting("eventos") == "true": canaison.append('[B][COLOR white]Eventos[/COLOR][/B]') changeview() if selfAddon.getSetting("praias") == "true": addDir("[B][COLOR white]Praias[/COLOR][/B]", 'nada', 26, tvporpath + art + 'versao-ver2.png', 1, 'Webcams das melhores praias nacionais.', True) setupCanais(canaison, empty, nrcanais, programas) try: canaison = ''.join(canaison) savefile('canaison', canaison) except: pass vista_canais() xbmcplugin.setContent(int(sys.argv[1]), 'livetv')
def signal_handler(signal, frame): """ Capture Ctrl+C """ global crawler_state global interrupted print "Saving state Ctrl+C" interrupted = True #Serialize dumped = pickle.dumps(crawler_state) savefile('state.data', dumped) sys.exit(0)
def main(): # Arguments logic parser = argparse.ArgumentParser(description='Web crawler') parser.add_argument('website', nargs='?', action='store', help='website to crawl') parser.add_argument('-l', action='store', default=2, help='maximum depth level to crawl') parser.add_argument('-resume', action='store_const', const=32, help='resume crawler') global crawler_state # Arguments parser args = parser.parse_args() # Crawler c = Crawler(args.website, int(args.l)) crawler_state = c # Register Ctrl+C signal.signal(signal.SIGINT, signal_handler) if not args.resume: info = c.crawl(args.website) else: #recover state print "recovering..." raw = loadfile('state.data') data = pickle.loads(raw) c.output = data.output c.queue = data.queue c.queue.append((data.current_url, data.level)) c.visited = data.visited c.url = data.url c.maxdepth = data.maxdepth info = c.crawl(data.url) print "OK" # Save data savefile('structure.txt', info)
def canais(): librtmpwindow() info_servidores() nrcanais=62 canaison=[] empty='nada' #GA("None","listacanais") if selfAddon.getSetting("prog-lista3") == "true": mensagemprogresso.create('TV Portuguesa', 'A carregar listas de programação.','Por favor aguarde.') mensagemprogresso.update(0) if mensagemprogresso.iscanceled(): sys.exit(0) programas=p_todos() mensagemprogresso.close() else: programas=[] sintomecomsorte() if activado==True: addCanal("[B]Lista Completa[/B]",empty,16,tvporpath + art + 'gravador-ver1.png',nrcanais,'') addDir("[B][COLOR white]Informações[/COLOR][/B]",'nada',1,tvporpath + art + 'defs-ver2.png',1,'Clique aqui para voltar ao menu principal.',True) if selfAddon.getSetting("listas-pessoais") == "true": addDir("[B][COLOR white]Listas Pessoais[/COLOR][/B]",'nada',6,tvporpath + art + 'listas-ver2.png',1,'Outras listas de canais criadas pela comunidade.',True) if selfAddon.getSetting("radios") == "true": addDir("[B][COLOR white]Radios[/COLOR][/B]",'nada',19,tvporpath + art + 'radios-v1.png',1,'Oiça comodamente radios nacionais.',True) if selfAddon.getSetting("eventos") == "true": canaison.append('[B][COLOR white]Eventos[/COLOR][/B]'); changeview() if selfAddon.getSetting("praias") == "true": addDir("[B][COLOR white]Praias[/COLOR][/B]",'nada',26,tvporpath + art + 'versao-ver2.png',1,'Webcams das melhores praias nacionais.',True) setupCanais(canaison, empty, nrcanais, programas) try: canaison=''.join(canaison) savefile('canaison', canaison) except: pass vista_canais() xbmcplugin.setContent(int(sys.argv[1]), 'livetv')
def train_er_classifier(train_loader, test_loader, encoder, discriminator, classifier, use_cuda, n_z, sigma, num_epoch, lr, LAMBDA, LAMBDA0, LAMBDA1, file_name, epsilon, k, a, delay, print_every, dataset, attack_range): criterion2 = nn.CrossEntropyLoss() adversary = LinfPGDAttackOT(epsilon=epsilon, k=k, a=a, data=attack_range) encoder.train() discriminator.train() classifier.train() # Optimizers enc_optim = optim.Adam(encoder.parameters(), lr=lr) dis_optim = optim.Adam(discriminator.parameters(), lr=0.5 * lr) cla_optim = optim.Adam(classifier.parameters(), lr=0.05 * lr) enc_scheduler = StepLR(enc_optim, step_size=30, gamma=0.5) dis_scheduler = StepLR(dis_optim, step_size=30, gamma=0.5) cla_scheduler = StepLR(cla_optim, step_size=30, gamma=0.5) if use_cuda: encoder, discriminator, classifier = encoder.cuda( ), discriminator.cuda(), classifier.cuda() one = torch.Tensor([1]) mone = one * -1 if use_cuda: one = one.cuda() mone = mone.cuda() for epoch in range(num_epoch): step = 0 for images, labels in tqdm(train_loader): if use_cuda: images, labels = images.cuda(), labels.cuda() # ======== Training ======== # batch_size = images.size()[0] encoder.zero_grad() discriminator.zero_grad() classifier.zero_grad() # ======== Get Adversarial images ======== # if epoch >= delay: target_pred = pred_batch_ot(images, classifier, encoder) images_adv = adv_train_ot(images, target_pred, classifier, encoder, adversary) images_adv = to_var(images_adv) # ======== Train Discriminator ======== # frozen_params(encoder) frozen_params(classifier) free_params(discriminator) z_fake = torch.randn(batch_size, n_z) * sigma if use_cuda: z_fake = z_fake.cuda() d_fake = discriminator(to_var(z_fake)) z_real = encoder(images) d_real = discriminator(to_var(z_real)) disc_fake = LAMBDA * d_fake.mean() disc_real = LAMBDA * d_real.mean() disc_fake.backward(one) disc_real.backward(mone) diss_loss = disc_fake - disc_real dis_optim.step() clip_params(discriminator) if epoch >= delay: z_fake = torch.randn(batch_size, n_z) * sigma if use_cuda: z_fake = z_fake.cuda() d_fake = discriminator(to_var(z_fake)) z_real = encoder(images_adv) d_real = discriminator(to_var(z_real)) disc_fake = LAMBDA * d_fake.mean() disc_real = LAMBDA * d_real.mean() disc_fake.backward(one) disc_real.backward(mone) diss_loss = disc_fake - disc_real dis_optim.step() clip_params(discriminator) # ======== Train Classifier and Encoder======== # free_params(encoder) free_params(classifier) frozen_params(discriminator) pred_labels = classifier(encoder(to_var(images))) class_loss = LAMBDA0 * criterion2(pred_labels, labels) if epoch >= delay: pred_labels_adv = classifier(encoder(to_var(images_adv))) class_loss_adv = LAMBDA0 * criterion2(pred_labels_adv, labels) class_loss = (class_loss + class_loss_adv) / 2 class_loss.backward() cla_optim.step() enc_optim.step() # # ======== Train Encoder ======== # free_params(encoder) frozen_params(classifier) frozen_params(discriminator) z_real = encoder(images) d_real = discriminator(encoder(Variable(images.data))) d_loss = LAMBDA1 * (d_real.mean()) d_loss.backward(one) enc_optim.step() if epoch >= delay: z_real = encoder(images_adv) d_real = discriminator(encoder(Variable(images_adv.data))) d_loss = LAMBDA1 * (d_real.mean()) d_loss.backward(one) enc_optim.step() step += 1 if (step + 1) % print_every == 0: print( "Epoch: [%d/%d], Step: [%d/%d], Discriminative Loss: %.4f, Classification_Loss:%.4f" % (epoch + 1, num_epoch, step + 1, len(train_loader), diss_loss.data.item(), class_loss.data.item())) if (epoch + 1) % 1 == 0: savefile(file_name, encoder, discriminator, classifier, dataset=dataset) test(test_loader, classifier, encoder=encoder, use_cuda=True) savefile(file_name, encoder, discriminator, classifier, dataset=dataset) return classifier, encoder