def test_for_images(show_hist=False): IMG_PATH = abspath(join(dirname(__file__), pardir, 'images')) print "3. TEST KODOWANIA OBRAZÓW\n" images = listdir(IMG_PATH) for idx, image in enumerate(images, start=1): print " 3.%d. %s\n" % (idx, image) data = read_image(join(IMG_PATH, image)) diffed = differential_encoding(data) if show_hist: show_histogram(diffed, image) scaled = scale_to_positive(diffed) encode_and_print_stats(scaled, 8) print "\n=======================================================================\n"
def update_histogram(figure): # Retrieve the image stored inside the figure enc_str = figure["layout"]["images"][0]["source"].split(";base64,")[-1] # Creates the PIL Image object from the b64 png encoding im_pil = drc.b64_to_pil(string=enc_str) return utils.show_histogram(im_pil)
def update_histogram(figure): # Retrieve the image stored inside the figure enc_str = figure['layout']['images'][0]['source'].split(';base64,')[-1] # Creates the PIL Image object from the b64 png encoding im_pil = drc.b64_to_pil(string=enc_str) return show_histogram(im_pil)
def test_for_sample_data(show_hist=False): print "2. TEST KODOWANIA SZTUCZNYCH CIĄGÓW DANYCH\n" numpy.random.seed(37) print " 2.1. Rozkład jednostajny\n" for i, size_kb in enumerate([1, 128, 1024]): print " %s. %dKB" % (chr(ord('a') + i), size_kb) uniform_samples = normalize_to_byte( numpy.random.uniform(0., 256., size_kb * 1024)) if show_hist: show_histogram(uniform_samples) encode_and_print_stats(uniform_samples, 8) print " 2.2. Rozkład normalny\n" for i, size_kb in enumerate([1, 128, 1024]): print " %s. %dKB" % (chr(ord('a') + i), size_kb) normal_samples = normalize_to_byte(numpy.random.normal( 128., 16., 1024)) if show_hist: show_histogram(normal_samples) encode_and_print_stats(normal_samples, 8) print " 2.3. Rozkład Laplace'a\n" for i, size_kb in enumerate([1, 128, 1024]): print " %s. %dKB" % (chr(ord('a') + i), size_kb) laplace_samples = normalize_to_byte( numpy.random.laplace(128., 16., 1024)) if show_hist: show_histogram(laplace_samples) encode_and_print_stats(laplace_samples, 8) print "\n=======================================================================\n"
def test_for_sample_data(show_hist=False): print "2. TEST KODOWANIA SZTUCZNYCH CIĄGÓW DANYCH\n" numpy.random.seed(37) print " 2.1. Rozkład jednostajny\n" for i, size_kb in enumerate([1, 128, 1024]): print " %s. %dKB" % (chr(ord('a') + i), size_kb) uniform_samples = normalize_to_byte(numpy.random.uniform(0., 256., size_kb*1024)) if show_hist: show_histogram(uniform_samples) encode_and_print_stats(uniform_samples, 8) print " 2.2. Rozkład normalny\n" for i, size_kb in enumerate([1, 128, 1024]): print " %s. %dKB" % (chr(ord('a') + i), size_kb) normal_samples = normalize_to_byte(numpy.random.normal(128., 16., 1024)) if show_hist: show_histogram(normal_samples) encode_and_print_stats(normal_samples, 8) print " 2.3. Rozkład Laplace'a\n" for i, size_kb in enumerate([1, 128, 1024]): print " %s. %dKB" % (chr(ord('a') + i), size_kb) laplace_samples = normalize_to_byte(numpy.random.laplace(128., 16., 1024)) if show_hist: show_histogram(laplace_samples) encode_and_print_stats(laplace_samples, 8) print "\n=======================================================================\n"
from matplotlib import pyplot as plt from skimage import exposure from utils import show_image, show_histogram chest_xray_img = plt.imread('images/chest_xray.png') show_image(chest_xray_img, "Chest x-ray") show_histogram(chest_xray_img.ravel()) chest_xray_img_eq = exposure.equalize_hist(chest_xray_img) show_image(chest_xray_img_eq, 'Resulting image')