Пример #1
0
def test_send_sticker(client, catch_event, compare, sticker):
    with catch_event("onMessage") as x:
        mid = client.send(Message(sticker=sticker))

    assert compare(x, mid=mid)
    assert subset(vars(x.res["message_object"]), uid=mid, author=client.uid)
    assert subset(vars(x.res["message_object"].sticker), uid=sticker.uid)
Пример #2
0
def test_update_poll_vote(client1, group, catch_event, poll_data):
    event, poll, options = poll_data
    new_vote_ids = [o.uid for o in options[0:len(options):2] if not o.vote]
    re_vote_ids = [o.uid for o in options[0:len(options):2] if o.vote]
    new_options = [random_hex(), random_hex()]
    with catch_event("onPollVoted") as x:
        client1.updatePollVote(
            event["poll"].uid,
            option_ids=new_vote_ids + re_vote_ids,
            new_options=new_options,
        )

    assert subset(
        x.res,
        author_id=client1.uid,
        thread_id=group["id"],
        thread_type=ThreadType.GROUP,
    )
    assert subset(vars(x.res["poll"]),
                  title=poll.title,
                  options_count=len(options + new_options))
    for o in new_vote_ids:
        assert o in x.res["added_options"]
    assert len(x.res["added_options"]) == len(new_vote_ids) + len(new_options)
    assert set(x.res["removed_options"]) == set(
        o.uid for o in options if o.vote and o.uid not in re_vote_ids)
Пример #3
0
def test_remove_from_and_add_to_group(client1, client2, group, catch_event):
    # Test both methods, while ensuring that the user gets added to the group
    try:
        with catch_event("onPersonRemoved") as x:
            client1.removeUserFromGroup(client2.uid, group["id"])
        assert subset(
            x.res, removed_id=client2.uid, author_id=client1.uid, thread_id=group["id"]
        )
    finally:
        with catch_event("onPeopleAdded") as x:
            client1.addUsersToGroup(client2.uid, group["id"])
        assert subset(
            x.res, added_ids=[client2.uid], author_id=client1.uid, thread_id=group["id"]
        )
Пример #4
0
def test_remove_from_and_add_admins_to_group(client1, client2, group, catch_event):
    # Test both methods, while ensuring that the user gets added as group admin
    try:
        with catch_event("onAdminRemoved") as x:
            client1.removeGroupAdmins(client2.uid, group["id"])
        assert subset(
            x.res, removed_id=client2.uid, author_id=client1.uid, thread_id=group["id"]
        )
    finally:
        with catch_event("onAdminAdded") as x:
            client1.addGroupAdmins(client2.uid, group["id"])
        assert subset(
            x.res, added_id=client2.uid, author_id=client1.uid, thread_id=group["id"]
        )
Пример #5
0
def test_create_poll(client1, group, catch_event, poll_data):
    event, poll, _ = poll_data
    assert subset(event, author_id=client1.id, thread=group)
    assert subset(vars(event["poll"]),
                  title=poll.title,
                  options_count=len(poll.options))
    for recv_option in event[
            "poll"].options:  # The recieved options may not be the full list
        (old_option, ) = list(
            filter(lambda o: o.text == recv_option.text, poll.options))
        voters = [client1.id] if old_option.vote else []
        assert subset(vars(recv_option),
                      voters=voters,
                      votes_count=len(voters),
                      vote=False)
def test_fetch_message_emoji(client, emoji, emoji_size):
    mid = client.sendEmoji(emoji, emoji_size)
    message, = client.fetchThreadMessages(limit=1)

    assert subset(
        vars(message), uid=mid, author=client.uid, text=emoji, emoji_size=emoji_size
    )
def test_fetch_message_info_emoji(client, thread, emoji, emoji_size):
    mid = client.sendEmoji(emoji, emoji_size)
    message = client.fetchMessageInfo(mid, thread_id=thread["id"])

    assert subset(
        vars(message), uid=mid, author=client.uid, text=emoji, emoji_size=emoji_size
    )
Пример #8
0
def test_change_image_remote(client1, group, catch_event):
    url = "https://github.com/carpedm20/fbchat/raw/master/tests/image.png"
    with catch_event("onImageChange") as x:
        image_id = client1.changeGroupImageRemote(url, group["id"])
    assert subset(
        x.res, new_image=image_id, author_id=client1.uid, thread_id=group["id"]
    )
Пример #9
0
def test_change_image_local(client1, group, catch_event):
    url = path.join(path.dirname(__file__), "resources", "image.png")
    with catch_event("onImageChange") as x:
        image_id = client1.changeGroupImageLocal(url, group["id"])
    assert subset(
        x.res, new_image=image_id, author_id=client1.uid, thread_id=group["id"]
    )
Пример #10
0
def test_fetch_plan_info(client, catch_event, plan_data):
    event, plan = plan_data
    fetched_plan = client.fetchPlanInfo(plan.uid)
    assert subset(vars(fetched_plan),
                  time=plan.time,
                  title=plan.title,
                  author_id=int(client.uid))
Пример #11
0
def id3(attributes, targetAttribute, dataset):
    currentAttributes = attributes.copy()
    currentDataSet = dataset.copy()
    targetValues = utils.valuesOf(targetAttribute, currentDataSet)
    default = utils.majorityValue(targetAttribute, currentDataSet)
    currentEntropy = utils.entropy(targetAttribute, currentDataSet)

    # If attributes is empty, return the majority value
    if len(currentAttributes) == 0:
        return default

    # if all examples belong to same class
    if currentEntropy == 0.0:
        [value] = targetValues
        return value

    bestAttribute = utils.selectBestAttribute(currentAttributes,
                                              targetAttribute, currentDataSet)

    tree = {bestAttribute: {}}
    bestAttributeValues = utils.valuesOf(bestAttribute, currentDataSet)
    currentAttributes.remove(bestAttribute)
    for value in bestAttributeValues:
        subset = utils.subset(bestAttribute, value, currentDataSet)
        subtree = id3(currentAttributes, targetAttribute, subset)

        tree[bestAttribute][value] = subtree

    return tree
Пример #12
0
def test_on_plan_ended(client, thread, catch_event, compare):
    with catch_event("onPlanEnded") as x:
        client.createPlan(Plan(int(time()) + 120, "Wait for ending"))
        x.wait(180)
    assert subset(x.res,
                  thread_id=client.uid
                  if thread["type"] == ThreadType.USER else thread["id"],
                  thread_type=thread["type"])
Пример #13
0
def test_delete_messages(client):
    text1 = "This message will stay"
    text2 = "This message will be removed"
    mid1 = client.send(Message(text=text1))
    mid2 = client.send(Message(text=text2))
    client.delete_messages(mid2)
    (message,) = client.fetch_thread_messages(limit=1)
    assert subset(vars(message), uid=mid1, author=client.uid, text=text1)
Пример #14
0
def test_send_images(client, catch_event, compare, method_name, url):
    text = "An image sent with {}".format(method_name)
    with catch_event("onMessage") as x:
        mid = getattr(client, method_name)(url, Message(text))

    assert compare(x, mid=mid, message=text)
    assert subset(vars(x.res["message_object"]), uid=mid, author=client.uid, text=text)
    assert x.res["message_object"].attachments[0]
Пример #15
0
def test_send_text(client, catch_event, compare, text):
    with catch_event("on_message") as x:
        mid = client.send(Message(text=text))

    assert compare(x, mid=mid, message=text)
    assert subset(vars(x.res["message_object"]),
                  uid=mid,
                  author=client.uid,
                  text=text)
Пример #16
0
def test_on_plan_ended(client, thread, catch_event, compare):
    with catch_event("on_plan_ended") as x:
        client.create_plan(PlanData(int(time()) + 120, "Wait for ending"))
        x.wait(180)
    assert subset(
        x.res,
        thread_id=client.id if thread["type"] is None else thread["id"],
        thread_type=thread["type"],
    )
Пример #17
0
def simu_z_bzx(self):
	snp = subset(100)
	sample = sample(5000)
	f = 
	f = uniform(0.01, 0.5)
	z = binomial(2, f, 100)
	b_zx = normal(0, np.sqrt(1/(2*f*(1-f))))
	z_bzx = np.mean(z*b_zx)
	return z_bzx
Пример #18
0
def test_fetch_message_emoji(client, emoji, emoji_size):
    mid = client.send_emoji(emoji, emoji_size)
    (message, ) = client.fetch_thread_messages(limit=1)

    assert subset(vars(message),
                  id=mid,
                  author=client.id,
                  text=emoji,
                  emoji_size=emoji_size)
Пример #19
0
def test_send_mentions(client, catch_event, compare, message_with_mentions):
    with catch_event("onMessage") as x:
        mid = client.send(message_with_mentions)

    assert compare(x, mid=mid, message=message_with_mentions.text)
    assert subset(vars(x.res["message_object"]), uid=mid, author=client.uid, text=message_with_mentions.text)
    # The mentions are not ordered by offset
    for m in x.res["message_object"].mentions:
        assert vars(m) in [vars(x) for x in message_with_mentions.mentions]
def test_fetch_message_mentions(client, thread, message_with_mentions):
    mid = client.send(message_with_mentions)
    message, = client.fetchThreadMessages(limit=1)

    assert subset(
        vars(message), uid=mid, author=client.uid, text=message_with_mentions.text
    )
    # The mentions are not ordered by offset
    for m in message.mentions:
        assert vars(m) in [vars(x) for x in message_with_mentions.mentions]
def test_fetch_message_info_mentions(client, thread, message_with_mentions):
    mid = client.send(message_with_mentions)
    message = client.fetchMessageInfo(mid, thread_id=thread["id"])

    assert subset(
        vars(message), uid=mid, author=client.uid, text=message_with_mentions.text
    )
    # The mentions are not ordered by offset
    for m in message.mentions:
        assert vars(m) in [vars(x) for x in message_with_mentions.mentions]
Пример #22
0
def test_fetch_message_mentions(client):
    text = "This is a test of fetchThreadMessages"
    mentions = [Mention(client.uid, offset=10, length=4)]

    mid = client.send(Message(text, mentions=mentions))
    message, = client.fetchThreadMessages(limit=1)

    assert subset(vars(message), uid=mid, author=client.uid, text=text)
    for i, m in enumerate(mentions):
        assert vars(message.mentions[i]) == vars(m)
Пример #23
0
def test_change_approval_mode(client1, group, catch_event, require_admin_approval):
    with catch_event("onApprovalModeChange") as x:
        client1.changeGroupApprovalMode(require_admin_approval, group["id"])

    assert subset(
        x.res,
        approval_mode=require_admin_approval,
        author_id=client1.uid,
        thread_id=group["id"],
    )
Пример #24
0
def test_change_title(client1, group, catch_event):
    title = random_hex()
    with catch_event("onTitleChange") as x:
        client1.changeThreadTitle(title, group["id"], thread_type=ThreadType.GROUP)
    assert subset(
        x.res,
        author_id=client1.uid,
        new_title=title,
        thread_id=group["id"],
        thread_type=ThreadType.GROUP,
    )
Пример #25
0
def test_edit_plan(client, thread, catch_event, compare, plan_data):
    event, plan = plan_data
    new_plan = Plan(plan.time + 100, random_hex())
    with catch_event("onPlanEdited") as x:
        client.editPlan(plan, new_plan)
    assert compare(x)
    assert subset(
        vars(x.res["plan"]),
        time=new_plan.time,
        title=new_plan.title,
        author_id=client.uid,
    )
Пример #26
0
def test_send_remote_files(client, catch_event, compare):
    files = ["image.png", "data.json"]
    text = "Files sent from remote"
    with catch_event("onMessage") as x:
        mid = client.sendRemoteFiles(
            ["https://github.com/carpedm20/fbchat/raw/master/tests/{}".format(f) for f in files],
            message=Message(text),
        )

    assert compare(x, mid=mid, message=text)
    assert subset(vars(x.res["message_object"]), uid=mid, author=client.uid, text=text)
    assert len(x.res["message_object"].attachments) == len(files)
Пример #27
0
def test_send_local_files(client, catch_event, compare):
    files = ["image.png", "image.jpg", "image.gif", "file.json", "file.txt", "audio.mp3", "video.mp4"]
    text = "Files sent locally"
    with catch_event("onMessage") as x:
        mid = client.sendLocalFiles(
            [path.join(path.dirname(__file__), "resources", f) for f in files],
            message=Message(text),
        )

    assert compare(x, mid=mid, message=text)
    assert subset(vars(x.res["message_object"]), uid=mid, author=client.uid, text=text)
    assert len(x.res["message_object"].attachments) == len(files)
Пример #28
0
def test_send_emoji(client, catch_event, compare, emoji, emoji_size):
    with catch_event("onMessage") as x:
        mid = client.sendEmoji(emoji, emoji_size)

    assert compare(x, mid=mid, message=emoji)
    assert subset(
        vars(x.res["message_object"]),
        uid=mid,
        author=client.uid,
        text=emoji,
        emoji_size=emoji_size,
    )
Пример #29
0
def test_change_plan_participation(client, thread, catch_event, compare,
                                   plan_data, take_part):
    event, plan = plan_data
    with catch_event("onPlanParticipation") as x:
        client.changePlanParticipation(plan, take_part=take_part)
    assert compare(x, take_part=take_part)
    assert subset(
        vars(x.res["plan"]),
        time=plan.time,
        title=plan.title,
        author_id=client.uid,
        going=[client.uid] if take_part else [],
        declined=[client.uid] if not take_part else [],
    )
def get_information_gain(examples, feature_index, schema, entropy_of_set, is_nominal):
    """

    :param examples: list of examples
    @type entropy_of_set: float
    :return: float
    """
    gain = entropy_of_set
    feature = utils.get_example_values_for_feature(examples, schema, feature_index, is_nominal)
    feature_counts = feature
    for feature_value, count in feature_counts.items():
        if count == 0:
            continue
        gain -= count/len(examples) * get_entropy(utils.subset(examples, feature_index, feature_value, is_nominal), schema, feature_index, is_nominal)
    return gain
Пример #31
0
def plan_data(request, client, user, thread, catch_event, compare):
    with catch_event("onPlanCreated") as x:
        client.createPlan(request.param, thread["id"])
    assert compare(x)
    assert subset(
        vars(x.res["plan"]),
        time=request.param.time,
        title=request.param.title,
        author_id=client.uid,
        going=[client.uid],
        declined=[],
    )
    plan_id = x.res["plan"]
    assert user["id"] in x.res["plan"].invited
    request.param.uid = x.res["plan"].uid
    yield x.res, request.param
    with catch_event("onPlanDeleted") as x:
        client.deletePlan(plan_id)
    assert compare(x)
Пример #32
0
def _mimic_iterator_unbuffered(config, vocab):
    if config.training or config.force_trainset:
        splits = config.training_splits
    else:
        splits = config.testing_splits
    random.shuffle(splits)

    for split in splits:
        notes_file = pjoin(config.data_path, 'notes_%02d.pk' % (split,))
        if os.path.isfile(notes_file):
            print 'Loading data split', split
            with open(notes_file, 'rb') as f:
                data = pickle.load(f)
            raw_data = []
            if config.conditional:
                raw_aux_data = collections.defaultdict(list)
            for note in data:
                values = {}
                (text, values['gender'], values['has_dod'], values['has_icu_stay'], \
                 values['admission_type'], values['diagnoses'], values['procedures'], \
                 values['labs'], values['prescriptions']) = note
                if len(text) > 1:
                    raw_data.append(text)
                    if config.conditional:
                        for (feat, dims) in config.mimic_embeddings.items():
                            if dims > 0:
                                raw_aux_data[feat].append(values[feat])
            print 'Loaded data split', split

            batch_len = ((len(raw_data) - 1) // config.batch_size) + 1
            pad_count = (batch_len * config.batch_size) - len(raw_data)
            indices = range(batch_len)
            random.shuffle(indices)

            if not config.struct_only:
                raw_data = [[] for _ in range(pad_count)] + raw_data
                grouped_raw_data = [group for group in utils.grouper(config.batch_size, raw_data)]
                grouped_raw_data = [grouped_raw_data[i] for i in indices]
                raw_data = [note for group in grouped_raw_data for note in group]
            if config.conditional:
                for k, v in raw_aux_data.items():
                    if k in config.fixed_len_features:
                        v = [0 for _ in range(pad_count)] + v
                    else:
                        v = [[] for _ in range(pad_count)] + v
                    ls = [group for group in utils.grouper(config.batch_size, v)]
                    ls = [ls[i] for i in indices]
                    raw_aux_data[k] = [data for group in ls for data in group]

            for batch in xrange(batch_len):
                batch_data = raw_data[config.batch_size * batch : config.batch_size * (batch + 1)]
                if config.conditional:
                    batch_aux_data = {}
                    for (feat, vals) in raw_aux_data.items():
                        batch_aux_data[feat] = vals[config.batch_size * batch : \
                                                    config.batch_size * (batch + 1)]
                if config.recurrent:
                    max_note_len = max(len(note) for note in batch_data)
                    epoch_size = ((max_note_len - 2) // config.num_steps) + 1
                    data = np.zeros([config.batch_size, epoch_size * config.num_steps + 1],
                                    dtype=np.int32)
                else:
                    min_note_len = min(len(note) for note in batch_data)
                    data = np.zeros([config.batch_size, min_note_len], dtype=np.int32)
                    epoch_size = min_note_len - config.num_steps # this can become negative!
                    if epoch_size <= 0:
                        continue
                if config.recurrent:
                    mask = np.zeros([config.batch_size, epoch_size * config.num_steps + 1],
                                    dtype=np.float32)
                for i, iter_data in enumerate(batch_data):
                    if config.recurrent:
                        data[i, 0:len(iter_data)] = iter_data
                        mask[i, 0:len(iter_data)] = 1.0
                    else:
                        data[i, 0:min_note_len] = iter_data[:min_note_len]
                aux_data = {}
                aux_data_len = {}
                if config.conditional:
                    for feat, vals in batch_aux_data.items():
                        if feat in config.fixed_len_features:
                            max_struct_len = 1
                        else:
                            max_struct_len = max(len(v) for v in vals)
                        aux_data[feat] = np.zeros([config.batch_size, max_struct_len],
                                                  dtype=np.int32)
                        aux_data_len[feat] = np.zeros([config.batch_size], dtype=np.int32)
                        for i, iter_data in enumerate(vals):
                            if feat in config.fixed_len_features:
                                aux_data[feat][i, 0] = iter_data
                                aux_data_len[feat][i] = 1
                            else:
                                aux_data[feat][i, 0:len(iter_data)] = iter_data
                                aux_data_len[feat][i] = len(iter_data)

                new_batch = True
                epochs = range(epoch_size)
                if not config.recurrent:
                    if config.struct_only:
                        samples = 1
                    else:
                        samples = config.samples_per_note
                    epochs = [e for e in utils.subset(epochs, samples)]
                for i in epochs:
                    if config.recurrent:
                        x = data[:, i*config.num_steps:(i+1)*config.num_steps]
                        y = data[:, i*config.num_steps+1:(i+1)*config.num_steps+1]
                        m = mask[:, i*config.num_steps+1:(i+1)*config.num_steps+1]
                    else:
                        x = np.concatenate([data[:, i:(i+int(config.num_steps/2))],
                                   data[:, (i+1+int(config.num_steps/2)):i+1+config.num_steps]], 1)
                        y = data[:, i+int(config.num_steps/2)]
                        m = None
                    yield (x, y, m, aux_data, aux_data_len, new_batch)
                    new_batch = False
    def _generate_tree(self, examples, feature_indices, depth, node):
        """
        Generates a Decision Tree using the ID3 algorithm.

        :param examples: numpy array of `Example`s
        :param feature_indices:
        :param depth:
        :param parent:
        :return:
        """
        if len(examples) == 0:
            raise Exception("No examples provided. ID3 failed.")

        root = None
        if depth == 0:
            root = DecisionTreeNode(depth=depth)
        else:
            root = node

        if self.max_depth > 0 and depth == self.max_depth:
            root.label = utils.most_common_value(examples)
            return root

        if utils.is_homogeneous(examples, positive=True):  # test if all examples for class label are positive
            root.label = True
            return root
        elif utils.is_homogeneous(examples, positive=False):
            root.label = False
            return root

        if not feature_indices:
            root.label = utils.most_common_value(examples)
            return root

        root.feature_index, test_threshold = get_best_feature_index_and_value(examples, self.schema, feature_indices)
        is_nominal = self.schema[root.feature_index].type == 'NOMINAL'
        if is_nominal:
            root.feature_values = self.schema[root.feature_index].values
        else:
            root.is_nominal = False
            root.feature_values = [test_threshold, test_threshold]
        for feature_value_index in range(len(root.feature_values)):
            child = DecisionTreeNode(parent=root, depth=depth+1)
            root.add_child(child)
            if feature_value_index == 0:
                comparison_operator = '<'
            else:
                comparison_operator = '>'
            examples_matching_feature_value = utils.subset(examples, root.feature_index, root.feature_values[feature_value_index], is_nominal, comparison_operator=comparison_operator)
            if not examples_matching_feature_value:
                child.label=utils.most_common_value(examples)
            else:
                features_without_best_classifier = [index for index in feature_indices if index != root.feature_index]
                self._generate_tree(
                    examples=examples_matching_feature_value,
                    feature_indices=features_without_best_classifier,
                    depth=depth + 1,
                    node=child,
                )

        return root