def download_archive_stream(request, share, subdir=None): # try: selection = request.GET.get('selection').split(',') for item in selection: test_path(item) try: return share.create_archive_stream(items=selection,subdir=subdir) except Exception, e: return json_error([e.message])
def download_archive_stream(request, share, subdir=None): # try: selection = request.GET.get('selection', '').split(',') for item in selection: test_path(item) try: return share.create_archive_stream(items=selection, subdir=subdir) except Exception, e: return json_error([str(e)])
def move_paths(request, share, subdir=None, json={}): response = {'moved': [], 'failed': []} for item in json['selection']: test_path(item) item_subpath = item if subdir is None else os.path.join(subdir, item) try: if share.move_path(item_subpath, json['destination']): response['moved'].append(item) else: response['failed'].append(item) except Exception, e: pass
def move_paths(request, share, subdir=None, json={}): response={'moved':[],'failed':[]} for item in json['selection']: test_path(item) item_subpath = item if subdir is None else os.path.join(subdir,item) try: if share.move_path(item_subpath,json['destination']): response['moved'].append(item) else: response['failed'].append(item) except Exception, e: pass
def delete_paths(request, share, subdir=None, json={}): response={'deleted':[],'failed':[]} for item in json['selection']: test_path(item) item_path = item if subdir is None else os.path.join(subdir,item) try: if share.delete_path(item_path): response['deleted'].append(item) else: response['failed'].append(item) except: response['failed'].append(item) ShareLog.create(share=share,user=request.user,action=ShareLog.ACTION_DELETED,paths=json['selection'],subdir=subdir) return json_response(response)
def test_etrade_for_bogus_data(self): importer = EtradeImporter() resource = utils.test_path('test_data/etrade/2020-09-09/TSLA.json') chain = importer.from_json(resource) self.assertTrue( math.isnan( chain.get_option('put', datetime(2020, 9, 11), 20).theta))
def test_etrade_for_dates_with_missing_file(self): importer = EtradeImporter(utils.test_path('test_data/etrade')) daterange = pd.date_range(start='2020-09-09', end='2020-12-04') chains = [i for i in importer.for_dates('TSLA', daterange) if i] self.assertEqual(2, len(chains))
def test_etrade_for_dates(self): importer = EtradeImporter(utils.test_path('test_data/etrade')) daterange = pd.date_range(start='2020-09-09', end='2020-09-10') chains = list(importer.for_dates('TSLA', daterange)) self.assertEqual(2, len(chains))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 1 15:30:20 2019 @author: pedro """ import pandas as pd from utils import test_path, j from feature_engineering import create_rolling_features_dataframe import glob import os files = glob.glob(test_path() + "/seg*.csv") chunksize = 1500 for file in files: df_chunks = pd.read_csv(j(test_path(), file), chunksize=chunksize) chunk_list = [] for chunk in df_chunks: chunk = chunk.reset_index(drop=True) feat_row = create_rolling_features_dataframe( chunk.acoustic_data.values) chunk_list.append(feat_row) train_data = pd.concat(chunk_list) train_data = train_data.reset_index(drop=True) train_data.to_csv(j(test_path(), 'feats_1500_' + os.path.basename(file)))
Created on Sat Apr 13 16:18:54 2019 @author: pedro """ import os import numpy as np import pandas as pd import scipy.signal as signal import matplotlib.pyplot as plt from utils import j, train_path, test_path, train_resampled_path df_tr = pd.read_csv(j(train_path(), 'train.csv'), nrows=150000) # too much data crushes my home laptop #df_tr = utils.read_file(j(train_path(), 'train.csv')) df_te = pd.read_csv(j(test_path(), 'seg_0a0fbb.csv')) #df_tr.plot() t = df_tr.time_to_failure #t.plot() freq = np.abs(1. / np.mean(t[0:100].diff())) dt = df_tr.time_to_failure.diff() dt[0] = dt[1] #dt.plot() # weird jumps weirdjumps = t[dt < 10 * dt[0:100].mean()] freq_jumps = np.abs(1. / np.mean(weirdjumps.diff())) weirdjumps.plot() # use them to guess the frequencies