Пример #1
0
 def to_latex(self, vars):
     if isinstance(
             self.comps.base_type,
             TTRStringType) and len(self.comps.base_type.comps.types) > 1:
         return '(' + to_latex(self.comps.base_type) + ')^+'
     else:
         return to_latex(self.comps.base_type) + '^+'
Пример #2
0
 def to_latex(self,vars):
     s = ""
     for kvp in self.comps.__dict__.items():           
         if s == "":
             s = s + to_latex(kvp[0]) + " &:& "
         else:
             s = s + "\\\\\n"+to_latex(kvp[0]) + " &:& "
         
         if(isinstance(kvp[1], RecType)):
              s = s + kvp[1].to_latex(vars)                
         else:
             s = s + to_latex(kvp[1],vars) 
     return "\\left[\\begin{array}{lcl}\n"+s+"\n\\end{array}\\right]"
Пример #3
0
    def to_latex(self, vars):
        s = ""
        for kvp in self.comps.__dict__.items():
            if s == "":
                s = s + to_latex(kvp[0]) + " &:& "
            else:
                s = s + "\\\\\n" + to_latex(kvp[0]) + " &:& "

            if (isinstance(kvp[1], RecType)):
                s = s + kvp[1].to_latex(vars)
            else:
                s = s + to_latex(kvp[1], vars)
        return "\\left[\\begin{array}{lcl}\n" + s + "\n\\end{array}\\right]"
Пример #4
0
    def to_latex(self):
        s = ""
        for kvp in self.__dict__.items():
            if s == "":
                s = s + to_latex(kvp[0]) + " &=& "
            else:
                s = s + "\\\\\n" + to_latex(kvp[0]) + " &=& "

            if (isinstance(kvp[1], Rec)):
                s = s + kvp[1].to_latex()
            else:
                s = s + to_latex(kvp[1])

        return "\\left[\\begin{array}{rcl}\n" + s + "\n\\end{array}\\right]"
Пример #5
0
    def plot_results(list_predict, X_test, y_test, export_files=True):
        for result in list_predict:
            print(f"Model: {result['name']}")
            metrics = {
                "Accuracy": [result["accuracy"]],
                "F1": [result["f1"]],
                "Precision": [result["precision"]],
                "Recall": [result["recall"]],
            }

            metrics_df = pd.DataFrame.from_dict(
                metrics,
                orient="index",
                columns=["Valor"],
            )
            print(metrics_df)
            print()
            print(confusion_matrix(y_test, result["predict"]))
            print()
            report = classification_report(y_test,
                                           result["predict"],
                                           output_dict=True)
            report_df = pd.DataFrame(report).transpose()
            print(report_df)
            plot_confusion_matrix(result["model"], X_test, y_test)
            print()
            if export_files:
                # to_latex(
                #     metrics_df,
                #     f"outputs/tex/table_metrics_{result['state_name'].lower()}.tex",
                #     float_format="%.2f",
                # )
                to_latex(
                    report_df,  # report_df.iloc[:-3, :-1],
                    f"outputs/tex/table_{result['state_name'].lower()}.tex",
                    float_format="%.2f",
                )
                plt.savefig(
                    f"outputs/img/matrix_{result['state_name'].lower()}.png")
            plt.show()
            print("--------------------------------------------")
Пример #6
0
 def to_latex(self,vars):
     # TODO
     return to_latex(self.comps.base_type,vars)+'+'
Пример #7
0
 def to_latex(self):
     return to_latex(self.comps.base_type)+'_{'+ to_latex(self.comps.obj)+'}'
Пример #8
0
 def to_latex(self,vars):
     return to_latex(self.comps.base_type,vars)+'_{'+ to_latex(self.comps.obj,vars)+'}'
Пример #9
0
 def to_latex(self,vars):
     return '\\left(\\begin{array}{rcl}\n'+ to_latex(self.comps.domain,vars) + '->' + to_latex(self.comps.range,vars)+'\n\\end{array}\\right))'
Пример #10
0
 def to_latex(self):
     return to_latex(self.oplist)
Пример #11
0
 def to_latex(self, vars):
     return to_latex(self.name, vars, 'italic')
Пример #12
0
 def to_latex(self, vars):
     return '\\left[\\begin{array}{rcl}\n' + to_latex(
         self.comps.base_type, vars) + '\n\\end{array}\\right]'
Пример #13
0
 def to_latex(self):
     # TODO
     return to_latex(self.comps.base_type)+'+'
Пример #14
0
def process_df(quant, dirname, uid, args=None, args_model=None, save=True):

    global table_format

    if quant.columns.names != ["stat", "set", "layer", "width"]:
        # the order is
        # perform pivot
        quant = pd.melt(quant.reset_index(), id_vars="draw").pivot(index="draw", columns=["stat", "set", "layer", "width"], values="value")

    output_root = os.path.join(dirname, f"meta_{uid}")
    os.makedirs(output_root, exist_ok=True)
    idx = pd.IndexSlice
    cols_error = idx['error', :, :, :]
    N_L = len(quant.columns.unique(level="layer")) -1 # number of hidden layers
    errors = quant["error"]
    losses = quant["loss"]

    if save:
        quant.to_csv(os.path.join(output_root, 'quant.csv'))


    quant.sort_index(axis=1, inplace=True)
    quant.loc[:, cols_error] *= 100  # in %
    quant.groupby(level=["stat", "set"], axis=1, group_keys=False).describe().to_csv(os.path.join(output_root, 'describe.csv'))
    #csvlosses.to_csv(os.path.join(output_root, 'losses.csv'))
    #errors.to_csv(os.path.join(output_root, 'errors.csv'))

    #quant_describe = pd.DataFrame(group.describe().rename(columns={'value': name}).squeeze()
    #                              for (name, group) in quant.groupby(level=["stat", "set"], axis=1))
    #quant_describe.to_csv(os.path.join(output_root, 'describe.csv'))

    #fig=plt.figure()
    #f, axes = plt.subplots(1, 2, figsize=[10., 5.])

    df_reset = quant.reset_index()
    df_plot = pd.melt(df_reset, id_vars='draw')#.query("layer>0")
    df_plot_no_0 = df_plot.query('layer>0')
    df_plot_0 = df_plot.query('layer==0')
    #relative quantities
    quant_ref = quant.loc[1, Idx[:, :, 0, :]].droplevel("layer")  # for all the  widths
    N_S = len(quant_ref)
    quant_ref_val = quant_ref.iloc[np.repeat(np.arange(N_S), N_L)].values
    quant_rel = (quant.loc[:, Idx[:, :, 1:]] - quant_ref_val).abs()
    #quant_plus = quant.loc[:, Idx[:, :, 1:]] + quant_ref + 1e-10
    #quant_rel /= quant_plus
    #quant_rel *= 2

    # utils.to_latex(output_root, quant.loc[:, Idx[:, :, 1:]], table_format, key_err="error")
    utils.to_latex(output_root, quant_rel, table_format, key_err="error")

    df_reset_rel = quant_rel.reset_index()
    df_plot_rel = pd.melt(df_reset_rel, id_vars="draw")

    # palette=sns.color_palette(n_colors=2)  # the two datasets
    palette=sns.color_palette(n_colors=N_L)  # the N_L layers
    # bp = sns.catplot(
        # data = df_plot.query('layer > 0'),
        # #col='log_mult',
        # hue='width',
        # dodge=False,
        # row='stat',
        # col='set',
        # #col='log_mult',
        # x='layer',
        # y='value',
        # #ax=axes[0],
        # #kind='line',
        # #ylabel='%',
        # #ci=100,
        # #col_wrap=2,
        # #facet_kws={
        # #    'sharey': False,
        # #    'sharex': True
        # #}
    # )
    # bp.axes[0,0].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[errors["train"][0].iloc[0].values], color="red")

    # bp.axes[0,1].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[errors["test"][0].iloc[0].values], color="red")

    # bp.axes[0,0].set_title("Error")
    # bp.axes[0,0].set_ylabel("error (%)")

    # # bp2 = sns.boxplot(
        # # data = df_plot.query('layer >0 & stat =="loss"'),
        # # x="layer",
        # # hue="width",
        # # doge=False,
        # # y="value",
        # # ax=axes[1]
    # # )



    # bp.axes[1,0].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[losses["train"][0].iloc[0].values], color="red", label="full network")
    # bp.axes[1,1].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[losses["test"][0].iloc[0].values], color="red", label="full network")
    # bp.axes[1,0].set_title("Loss")
    # bp.axes[1,0].set_ylabel("loss")
    # #plt.legend()
    # #f.legend()
    # bp.fig.subplots_adjust(top=0.85, left=0.10)
    # plt.savefig(fname=os.path.join(output_root, 'boxplot.pdf'))

    # rp = sns.relplot(
        # data = df_plot.query('layer > 0'),
        # #col='log_mult',
        # hue='width',
        # col='set',
        # row='stat',
        # # row='stat',
        # #col='log_mult',
        # x='layer',
        # y='value',
        # #style='event',
        # markers=True,
        # #ax=axes[0],
        # kind='line',
        # legend="auto",
        # #"full",
        # #ylabel='%',
        # #ci=100,
        # #col_wrap=2,
        # facet_kws={
            # 'sharey': False,
            # 'sharex': True,
            # 'legend_out':True,
        # }
    # )


    # rp.axes[0,0].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[errors["train"][0].iloc[0].values], color="red")

    # rp.axes[0,1].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[errors["test"][0].iloc[0].values], color="red")

    # rp.axes[0,0].set_title("Error")
    # rp.axes[0,0].set_ylabel("error (%)")

    # # rp.axes[1,0].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[losses["train"][0].iloc[0].values], color="red", label="full network")
    # # rp.axes[1,1].plot(np.linspace(0, N_L, num=N_L)-1, (N_L)*[losses["test"][0].iloc[0].values], color="red", label="full network")
    # rp.axes[1,0].set_title("Loss")
    # rp.axes[1,0].set_ylabel("loss")

    # #rp.axes[0,1].legend()
    # #plt.legend()
    # rp.fig.legend()
    # #rp.fig.subplots_adjust(top=0.9, left=1/rp.axes.shape[1] * 0.1)
    # rp.fig.subplots_adjust(top=0.85, left=0.10)
    # if args_model is not None and args is not None:
       # removed = "width / {}".format(args.fraction) if hasattr(args, 'fraction') and args.fraction is not None else args.remove
       # rp.fig.suptitle('ds = {}, width = {}, removed = {}, draw = {}'.format(args_model.dataset, args_model.width, removed, args.ndraw))
    # #rp.set(yscale='log')
    # #rp.set(ylabel='%')
    # plt.savefig(fname=os.path.join(output_root, 'relplot.pdf'))

    # rel_error = pd.DataFrame()
    # rel_losses = pd.DataFrame()
    # for W in quant.columns.levels[2]:  # for each width
        # idx_col = (errors.columns.get_level_values("layer") > 0) & (errors.columns.get_level_values("width") == W)
        # rel_error = pd.concat([rel_error, abs(errors.loc[:, idx_col] - errors[0][W][1]) / errors[0][W][1]], axis=1, ignore_index=False)
        # rel_losses = pd.concat([rel_losses,  abs(losses.loc[:, idx_col] - losses[0][W][1]) / losses[0][W][1]], axis=1, ignore_index=False)

    # #rel_error_plot = pd.melt(rel_error.reset_index(), id_vars="draw")#, id_vars="draw")
    # #rel_losses_plot = pd.melt(rel_losses.min(axis=0).reset_index(), id_vars="layer")#, id_vars="draw")

    df_plot = pd.melt(df_reset, id_vars='draw')#.query("layer>0")
    #errors_plot = pd.melt(errors.reset_index(), id_vars="draw").query("layer>0")
    #losses_plot = pd.melt(losses.reset_index(), id_vars="draw").query("layer>0")
    cols = ["stat", "set", "layer", "width"]
    # plt.figure()

    # if N_L == 1:
        # col = "stat"
        # col_order = ["loss", "error"]
        # row="layer"
        # row_order =[1]
    # else:
        # col = "layer"
        # col_order=range(1, N_L+1)
        # row ="stat"
        # row_order = ["loss", "error"]

    # #lp = rel_losses.min(axis=0).plot(kind='line', hue='width', x='layer')
    # mp = sns.relplot(
        # #data=rel_losses.min(axis=0).to_frame(name="loss"),
        # # data=df_plot_rel, #df_plot.pivot(index="draw", columns=cols).min(axis=0).to_frame(name="value"),
        # data=df_plot.pivot(index="draw", columns=cols).min(axis=0).to_frame(name="value"),
        # # style="layer",
        # row=row,
        # row_order = row_order,
        # #row="stat",
        # #col_order=["train", "test"],
        # col=col,
        # col_order=col_order,
        # x="width",
        # y="value",
        # kind='line',
        # legend="full",
        # # legend_out=True,
        # palette=palette,
        # hue='set',
        # hue_order=["train", "test"],
        # # style_order=["],
        # markers=True,
        # facet_kws={
            # 'legend_out': True,
            # 'sharey': 'row' if (N_L>1) else False ,
            # 'sharex': True
        # }
        # #y="value",
    # )

    # # mp.fig.set_size_inches(10, 10)
    # if args_model is not None:
        # mp.fig.suptitle("(B) FCN {}".format(args_model.dataset.upper()))

    # mp.legend.set_title("Datasets")
    # fig, axes = plt.subplots(1, 2, figsize=(8, 4), sharex=False)

    # xlabels=[str(i) for i in range(N_W)]
    is_vgg=False
    dataset="MNIST"
    # fig.suptitle("{} {}".format('VGG' if is_vgg else 'FCN', dataset.upper()))
    k = 0

    #rp.set_axis_labels("layer", "Loss", labelpad=10)
    #quant.loc[1, Idx["loss", :, 0]].lineplot(x="layer_ids", y="value", hue="")
    for i, stat in enumerate(["loss","error" ]):
        for j, setn in enumerate(["train", "test"]):
            if stat == "loss" and setn=="test":
                continue
            if stat == "error" and setn=="train":
                continue
            # axes[k] = rp.axes[j,i]
            # ax = axes[k]
            plt.figure()
            fig,ax = plt.subplots(1,1,figsize=(4,4))

            # df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(name="value")
            df_plot= quant.loc[:, Idx[stat, setn, 1:, :]].min(axis=0).to_frame(name="value")
            lp = sns.lineplot(
                #data=rel_losses.min(axis=0).to_frame(name="loss"),
                # data=df_plot_rel if not is_vgg else df_plot_rel.pivot(index="draw", columns=col_order).min(axis=0).to_frame(name="value"),
                data=df_plot,
                #hue="width",
                hue="layer",
                # hue_order=["A", "B"],
                x="width",
                y="value",
                legend=None,
                # style='set',
                ci='sd',
                palette=palette,
                #style='layer',
                markers=False,
                ax=ax,
                dashes=True,
                #legend_out=True,
                #y="value",
            )
            # widths = quant.columns.get_level_values("width").unique()
            # b = widths[-1]
            # p = int(math.log(b, 10))
            # k = int(math.floor(b / (10**(math.floor(math.log(b, 10))))))

            # xticks=[widths[0]] + [i * 10**p for i in range(1,k)] + [widths[-1]]
            # lp.set(xticks=xticks)
            # lp.set(xticks=range(0, len(xlabels)))
            # rp.set_xticklabels(xlabels)
            # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels))
            # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels))

            # lp.set_xticklabels(xlabels, rotation=30*(is_vgg))
            ax.set_title("{} {}{}".format(setn.title()+(setn=="train")*"ing", stat.title(), " (%)" if stat=="error" else ''))
            # ylabel = stat if stat == "loss" else "error (%)"


            # ax.set_xlabel("width")
            ax.tick_params(labelbottom=True)
            df_ref = quant_ref[stat,setn].to_frame(name="value")

            sns.lineplot(data=df_ref.reset_index(),
                         ax=ax,
                         # hue='layer',
                         # hue_order=["train", "test"],
                         # alpha=0.5,
                         x="width",
                         y="value",
                         legend=False,
                         )
            # ax.plot(df_ref, c='g', ls=':')
            ax.set_ylabel(None)

            for l in ax.lines[-1:]:
                l.set_linestyle(':')
                l.set_color('g')

            if k == 1:
                fig.legend(handles=ax.lines, labels=["1", "2", "Ref."], title="Layer", bbox_to_anchor=(0.9,0.8), borderaxespad=0.)
            k+=1

            plt.savefig(fname=os.path.join(output_root, f"{setn}_{stat}.pdf"), bbox_inches='tight')
    # fig.subplots_adjust(top=0.85)
    # fig.legend(ax.lines, labels=["A", "B", "Reference"], title="Experiment", loc="center right")

    # palette=sns.color_palette(n_colors=2)  # the two experiments
    fig, axes = plt.subplots(1, 1, figsize=(4, 4))

    # xlabels=[str(i) for i in range(N_W)]
    is_vgg=False
    dataset="MNIST"
    # fig.suptitle("{} {}".format('VGG' if is_vgg else 'FCN', dataset.upper()))
    k = 0

    #rp.set_axis_labels("layer", "Loss", labelpad=10)
    #quant.loc[1, Idx["loss", :, 0]].lineplot(x="layer_ids", y="value", hue="")
    for i, stat in enumerate(["error" ]):
        for j, setn in enumerate(["train"]):#, "test"]):
            if stat == "loss" and setn=="test":
                continue
            # axes[k] = rp.axes[j,i]
            # ax = axes[k]
            ax = axes

            # df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(name="value")
            df_plot= quant.loc[:, Idx[stat, setn, 1:, :]].min(axis=0).to_frame(name="value")
            lp = sns.lineplot(
                #data=rel_losses.min(axis=0).to_frame(name="loss"),
                # data=df_plot_rel if not is_vgg else df_plot_rel.pivot(index="draw", columns=col_order).min(axis=0).to_frame(name="value"),
                data=df_plot,
                #hue="width",
                hue="layer",
                # hue_order=["A", "B"],
                x="width",
                y="value",
                legend=None,
                # style='set',
                ci='sd',
                palette=palette,
                #style='layer',
                markers=False,
                ax=ax,
                dashes=True,
                #legend_out=True,
                #y="value",
            )
            widths = quant.columns.get_level_values("width").unique()
            b = widths[-1]
            p = int(math.log(b, 10))
            k = int(math.floor(b / (10**(math.floor(math.log(b, 10))))))

            xticks=[widths[0]] + [i * 10**p for i in range(1,k)] + [widths[-1]]
            lp.set(xticks=xticks)
            # lp.set_xticklabels(xticks)
            # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels))
            # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels))

            # lp.set_xticklabels(xlabels, rotation=30*(is_vgg))
            ax.set_title("{} {}{}".format(setn.title(), stat.title(), " (%)" if stat=="error" else ''))
            # ylabel = stat if stat == "loss" else "error (%)"


            ax.set_xlabel("width")
            df_ref = quant_ref[stat,setn].to_frame(name="value")

            sns.lineplot(data=df_ref.reset_index(),
                         ax=ax,
                         # hue='layer',
                         # hue_order=["train", "test"],
                         # alpha=0.5,
                         x="width",
                         y="value",
                         legend=False,
                         )
            # ax.plot(df_ref, c='g', ls=':')
            ax.set_ylabel(None)

            for l in ax.lines[-1:]:
                l.set_linestyle(':')
                l.set_color('g')

            k+=1

    # fig.subplots_adjust(top=0.85)
    fig.legend(handles=ax.lines, labels=["1", "2", "Ref."], title="Layer", bbox_to_anchor=(0.9,0.8), borderaxespad=0.)#, bbox_transform=fig.transFigure)
    # fig.legend(ax.lines, labels=[], title="Experiment", loc="center right")
    plt.margins()
    plt.savefig(fname=os.path.join(output_root, "error_train.pdf"), bbox_inches='tight')

    plt.close('all')
    return
Пример #15
0
def process_df(quant,
               dirname,
               stats_ref=None,
               args=None,
               args_model=None,
               save=True):

    global table_format

    col_names = ["experiment", "stat", "set", "layer"]
    quant = utils.assert_col_order(quant, col_names, id_vars="draw")
    keys = list(quant.columns.levels[0].sort_values())

    output_root = os.path.join(dirname, f"meta_" + "_".join(keys))
    os.makedirs(output_root, exist_ok=True)
    idx = pd.IndexSlice
    cols_error = idx[:, 'error', :, :]
    N_L = len(quant.columns.unique(level="layer"))  # number of hidden layers
    # errors = quant["error"]
    # losses = quant["loss"]
    quant.drop("val", axis=1, level="set", inplace=True, errors='ignore')
    quant.drop(("test", "loss"), axis=1, inplace=True, errors='ignore')

    if save:
        quant.to_csv(os.path.join(output_root, 'merge.csv'))
        if stats_ref is not None:
            stats_ref.to_csv(os.path.join(output_root, 'stats_ref.csv'))

    quant.sort_index(axis=1, inplace=True)
    quant.loc[:, cols_error] *= 100  # in %
    quant.groupby(level=["experiment", "stat", "set"],
                  axis=1,
                  group_keys=False).describe().to_csv(
                      os.path.join(output_root, 'describe.csv'))

    df_reset = quant.reset_index()
    df_plot = pd.melt(df_reset, id_vars='draw')  #.query("layer>0")
    # df_plot_no_0 = df_plot.query('layer>0')
    quant_ref = None
    if stats_ref is not None:
        N_S = len(stats_ref)
        quant_ref_merge = pd.DataFrame()
        stats_ref.loc["error"] = stats_ref["error"].values * 100
        for key in keys:
            quant_ref_merge = pd.concat([quant_ref_merge, quant_ref])
            # N_S_key = len(quant[key].columns.get_level_values("stat").unique())
            N_L_key = len(
                quant[key].columns.get_level_values("layer").unique())
            quant_ref_key = stats_ref.iloc[np.tile(
                np.arange(N_S).reshape(N_S, 1),
                (N_L_key)).ravel()].to_frame(name="value").droplevel("layer")
            quant_ref_merge = pd.concat([quant_ref_merge, quant_ref_key])

        quant_ref = stats_ref.iloc[np.repeat(
            np.arange(N_S),
            (N_L))].to_frame(name="value").droplevel("layer").value
        try:
            utils.to_latex(output_root,
                           (quant - quant_ref_merge.value.values).abs(),
                           table_format,
                           key_err="error")
        except:
            pass

    is_vgg = 'vgg' in dirname
    dataset = 'CIFAR10' if 'cifar' in dirname else 'MNIST'
    # if args_model is not None:
    xlabels = [str(i) for i in range(N_L)]

    palette = sns.color_palette(n_colors=len(keys))  # the two experiments
    fig, axes = plt.subplots(2, 1, figsize=(4, 8), sharex=False)
    # sns.set(font_scale=1,rc={"lines.linewidth":3})

    # fig.suptitle("{} {}".format('VGG' if is_vgg else 'FCN', dataset.upper()))
    k = 0

    #rp.set_axis_labels("layer", "Loss", labelpad=10)
    #quant.loc[1, Idx["loss", :, 0]].lineplot(x="layer_ids", y="value", hue="")
    for i, stat in enumerate(["loss", "error"]):
        for j, setn in enumerate(["train", "test"]):
            if stat == "loss" and setn == "test":
                continue
            if stat == "error" and setn == "train":
                continue
            # axes[k] = rp.axes[j,i]
            ax = axes.flatten()[k]

            df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(
                name="value")
            lp = sns.lineplot(
                #data=rel_losses.min(axis=0).to_frame(name="loss"),
                # data=df_plot_rel if not is_vgg else df_plot_rel.pivot(index="draw", columns=col_order).min(axis=0).to_frame(name="value"),
                data=df_plot,
                #hue="width",
                hue="experiment",
                hue_order=keys,
                x="layer",
                y="value",
                legend=None,
                # style='set',
                ci='sd',
                palette=palette,
                #style='layer',
                markers=False,
                ax=ax,
                dashes=True,
                # linewidth=3.,
                #legend_out=True,
                #y="value",
            )
            lp.set(xticks=range(0, len(xlabels)))
            # rp.set_xticklabels(xlabels)
            # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels))
            # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels))

            # if k == 1:
            # if k==1:
            lp.set_xticklabels(xlabels)  #, rotation=40*(is_vgg))
            # else:
            # lp.set_xticklabels(len(xlabels)*[None])
            ax.set_title("{} {}{}".format(
                setn.title() + (setn == "train") * "ing", stat.title(),
                " (%)" if stat == "error" else ''))
            # ylabel = stat if stat == "loss" else "error (%)"
            ax.set_xlabel("layer index l")
            ax.set_ylabel(None)
            # ax.tick_params(labelbottom=True)

            if quant_ref is not None:
                # data_ref  = quant_ref[stat, setn].reset_index()

                ax.axline((0, quant_ref[stat, setn][0]),
                          slope=0,
                          ls=":",
                          zorder=2,
                          c='g')
                # for ax in ax.lines[-1:]:  # the last two
                # ax.set_linestyle('--')
            k += 1

    # fig.subplots_adjust(top=0.85)
    # if is_vgg:
    labels = keys + ["Ref."]
    fig.legend(handles=ax.lines,
               labels=labels,
               title="Exp.",
               loc="upper right",
               borderaxespad=0,
               bbox_to_anchor=(0.9, 0.9))  #, bbox_transform=fig.transFigure)
    fig.tight_layout()
    plt.margins()
    fig.savefig(fname=os.path.join(output_root, "train_loss_test_error.pdf"),
                bbox_inches='tight')
    k = 0
    # sns.set(font_scale=1,rc={"lines.linewidth":3})

    fig, axes = plt.subplots(1, 1, figsize=(4, 4), sharex=False)
    # fig.suptitle("{} {}".format('VGG' if is_vgg else 'FCN', dataset.upper()))

    for i, stat in enumerate(["error"]):
        for j, setn in enumerate(["train"]):
            if stat == "loss" and setn == "test":
                continue
            if stat == "error" and setn == "test":
                continue
            # axes[k] = rp.axes[j,i]
            ax = axes

            df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(
                name="value")
            lp = sns.lineplot(
                #data=rel_losses.min(axis=0).to_frame(name="loss"),
                # data=df_plot_rel if not is_vgg else df_plot_rel.pivot(index="draw", columns=col_order).min(axis=0).to_frame(name="value"),
                data=df_plot,
                #hue="width",
                hue="experiment",
                hue_order=keys,
                x="layer",
                y="value",
                legend=None,
                # style='set',
                ci='sd',
                palette=palette,
                #style='layer',
                markers=False,
                ax=ax,
                dashes=True,
                #legend_out=True,
                #y="value",
            )
            lp.set(xticks=range(0, len(xlabels)))
            # rp.set_xticklabels(xlabels)
            # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels))
            # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels))

            lp.set_xticklabels(xlabels)  #, rotation=40*(is_vgg))
            ax.set_title("{} {}{}".format(
                setn.title() + (setn == "train") * 'ing', stat.title(),
                " (%)" if stat == "error" else ''))
            # ylabel = stat if stat == "loss" else "error (%)"
            ax.set_xlabel("layer index l")
            ax.set_ylabel(None)

            if quant_ref is not None:
                # data_ref  = quant_ref[stat, setn].reset_index()

                ax.axline((0, quant_ref[stat, setn][0]),
                          slope=0,
                          ls=":",
                          zorder=2,
                          c='g')

            k += 1

    labels = keys + ["Ref."]
    fig.legend(handles=ax.lines,
               labels=keys,
               title="Exp.",
               loc="upper right",
               bbox_to_anchor=(0.9, 0.9),
               borderaxespad=0)  #, bbox_transform=fig.transFigure)
    plt.margins()
    plt.savefig(fname=os.path.join(output_root, "error_train.pdf"),
                bbox_inches='tight')

    if "B" in keys:
        df_B = quant["B"]
    elif "B2" in keys:
        df_B = quant["B2"]
    else:
        return
    n_draws = len(df_B.index)
    # vary_draw=copy.deepcopy(df_B)
    df_B_plot = pd.melt(df_B.reset_index(), id_vars="draw")
    cp = sns.FacetGrid(
        data=df_B_plot,
        # hue="experiment",
        # hue_order=["A", "B"],
        col="stat",
        col_order=["loss", "error"],
        row="set",
        row_order=["train", "test"],
        sharey=False,
        sharex=True,
        #y="value",
    )
    styles = ['dotted', 'dashed', 'dashdot', 'solid']
    # for i_k, k in enumerate([10, 50, 100, 200]):
    draws = len(df_B.index)
    df_bound = pd.DataFrame(columns=df_B.columns)
    # df_bound.columns = df_B.columns
    for k in range(1, draws + 1):
        # df_cut = pd.melt(df_B[:k].reset_index(), id_vars="draw")
        df_bound.loc[k, :] = df_B[:k].min(axis=0)
        # idx_min = df_cut.query('stat=="loss"idxmin")
    fig, axes = plt.subplots(2, 2, figsize=(12, 12), sharex=True)
    for i, stat in enumerate(["loss", "error"]):
        for j, setn in enumerate(["train", "test"]):
            df_bound_plot = df_bound[stat, setn].max(axis=1)
            ax = axes[i, j]
            ax.set_title("{} {}".format(setn.title(), stat.title()))
            sns.lineplot(
                data=df_bound_plot,
                ax=ax,
            )
            # cp.axes[j,i].set_title("{} {}".format(setn.title(), stat.title()))
    plt.savefig(fname=os.path.join(output_root, "comp_draws.pdf"),
                bbox_inches='tight')

    plt.close('all')
Пример #16
0
 def to_latex(self):
     return '^'.join([to_latex(i) for i in self.items])
Пример #17
0
 def to_latex(self):
     return to_latex(self.rec)+'.'+to_latex(self.path)
Пример #18
0
 def to_latex(self,vars):
     vars = vars+[self.var]
     return '\\lambda ' + to_latex(self.var,vars) + ':' + to_latex(self.domain_type,vars) + '\\ .\\ ' + to_latex(self.body,vars)
Пример #19
0
 def to_latex(self, vars):
     # TODO
     return '⁀'.join([to_latex(i, vars) for i in self.comps.types])
Пример #20
0
 def to_latex(self):
     return '\\text{'+self.comps.pred.name.replace('_','\\_')+'}'+'('+', '.join([to_latex(x) for x in self.comps.args])+')'
Пример #21
0
 def to_latex(self,vars):
     return to_latex(self.oplist[0],vars)+to_latex(self.oplist[1],vars)+to_latex(self.oplist[2],vars)
Пример #22
0
 def to_latex(self, vars):
     return to_latex(self.comps.base_type, vars) + '_{' + to_latex(
         self.comps.obj, vars) + '}'
Пример #23
0
 def to_latex(self,vars):
     return '^'.join([to_latex(i,vars) for i in self.items])
Пример #24
0
    def plot_final_results(self, df: pd.DataFrame):
        # print(df)

        def get_approach(row: pd.Series):
            return {
                "INICIAL": "Inicial",
                "ISO": "Floresta de Isolamento",
                "SFS": "Sequential Feature Selector",
                "ISO_SFS": "SFS + Floresta de Isolamento",
            }.get(row["state"])

        def get_approach_order(row: pd.Series):
            return {
                "INICIAL": 0,
                "ISO": 1,
                "SFS": 2,
                "ISO_SFS": 3,
            }.get(row["state"])

        def get_classifier_order(row: pd.Series):
            return {"LR": 0, "SVM": 1, "MLP": 2, "DTC": 3}.get(row["name"])

        def get_classifier(row: pd.Series):
            return {
                "LR": "Regressão Logística",
                "SVM": "Máquina de Vetores de Suporte",
                "MLP": "Perceptron Multicamadas",
                "DTC": "Árvore de Decisão",
            }.get(row["name"])

        df["tecnica"] = df.apply(lambda x: get_approach(x), axis=1)
        df["classificador"] = df.apply(lambda x: get_classifier(x), axis=1)
        df["ordem_tecnica"] = df.apply(lambda x: get_approach_order(x), axis=1)
        df["ordem_classificador"] = df.apply(lambda x: get_classifier_order(x),
                                             axis=1)
        df = df.sort_values(by=["ordem_classificador", "ordem_tecnica"])
        resultados_df = df[[
            "classificador", "tecnica", "accuracy", "f1", "precision", "recall"
        ]]
        to_latex(resultados_df,
                 "outputs/tex/table_resultado_final.tex",
                 index=False)
        print(resultados_df)

        sns.set()
        columns = [
            "name",
            "state",
            "state_name",
            "accuracy",
            "f1",
            "precision",
            "recall",
        ]
        resultados = df[columns]
        resultados.columns = [col.lower() for col in columns]
        resultados.to_csv("outputs/resultados.csv")
        pivot = resultados.pivot(
            "name", "state", "accuracy")[["INICIAL", "ISO", "SFS", "ISO_SFS"]]
        sns_plot = sns.heatmap(pivot, annot=True, linewidths=0.5)
        sns_plot.figure.savefig("outputs/img/results_heatmap.png")
Пример #25
0
 def to_latex(self):
     return '\\lambda ' + self.var + ':' + self.domain_type.to_latex() + '\\ .\\ ' + to_latex(self.body)
Пример #26
0
 def to_latex(self, vars):
     # TODO
     return to_latex(self.comps.base_type, vars) + '+'
Пример #27
0
 def to_latex(self, vars):
     return to_latex(self.name, vars)  #.replace('_', '\\_')
Пример #28
0
 def to_latex(self,vars):
     return to_latex(self.rec,vars)+'.'+to_latex(self.path,vars)
Пример #29
0
 def to_latex(self, vars):
     vars = vars + [self.var]
     return '\\lambda ' + to_latex(self.var, vars) + ':' + to_latex(
         self.domain_type, vars) + '\\ .\\ ' + to_latex(self.body, vars)
Пример #30
0
 def to_latex(self,vars):
     return '\\text{'+self.comps.pred.name+'}'+'('+', '.join([to_latex(x,vars) for x in self.comps.args])+')'
Пример #31
0
 def to_latex(self, vars):
     return to_latex(self.oplist[0], vars) + to_latex(
         self.oplist[1], vars) + to_latex(self.oplist[2], vars)
Пример #32
0
 def to_latex(self,vars):
     return '\\left[\\begin{array}{rcl}\n'+ to_latex(self.comps.base_type,vars)+'\n\\end{array}\\right]'
Пример #33
0
 def to_latex(self, vars):
     return to_latex(self.rec, vars) + '.' + to_latex(self.path, vars)
Пример #34
0
 def to_latex(self,vars):
     return to_latex(self.name,vars,'italic')
Пример #35
0
 def to_latex(self, vars):
     return '^'.join([to_latex(i, vars) for i in self.items])
Пример #36
0
 def to_latex(self,vars):
     # TODO
     return '⁀'.join([to_latex(i,vars) for i in self.comps.types])
Пример #37
0
 def to_latex(self, vars):
     return '\\text{' + self.comps.pred.name + '}' + '(' + ', '.join(
         [to_latex(x, vars) for x in self.comps.args]) + ')'
Пример #38
0
 def to_latex(self,vars):
     return to_latex(self.name,vars)#.replace('_', '\\_')
Пример #39
0
 def to_latex(self, vars):
     return '\\left(\\begin{array}{rcl}\n' + to_latex(
         self.comps.domain, vars) + '->' + to_latex(
             self.comps.range, vars) + '\n\\end{array}\\right))'
Пример #40
0
def process_df(quant,
               dirname,
               stats_ref=None,
               args=None,
               args_model=None,
               save=True):

    global table_format

    idx = pd.IndexSlice
    #losses = quant.loc[:, idx[:, '#loss']]
    #errors = quant.loc[:, idx[:, 'error']]

    col_order = ["stat", "set", "layer"]
    if quant.columns.names != col_order:
        # the order is
        # perform pivot
        quant = pd.melt(quant.reset_index(),
                        id_vars="draw").pivot(index="draw",
                                              columns=col_order,
                                              values="value")

    if stats_ref is not None:
        if stats_ref.index.names != ["stat", "set"]:
            stats_ref = stats_ref.reorder_levels(["stat",
                                                  "set"]).sort_index(axis=0)

    quant.sort_index(axis=1, inplace=True)

    if save:
        quant.to_csv(os.path.join(dirname, 'quant.csv'))
        stats_ref.to_csv(os.path.join(dirname, 'stats_ref.csv'))
        quant.groupby(level=["stat", "set"], axis=1).describe().to_csv(
            os.path.join(dirname, 'describe.csv'))

    # if len(stats_ref.keys()==1):
    # stats_ref = stats_ref[stats_ref.keys()[0]]
    N_L = len(quant.columns.unique(level="layer"))  # number of hidden layers
    #N_sets = len(quant.columns.unique(level="set"))
    N_sets = 2  # only train and test

    palette = sns.color_palette(n_colors=N_sets)

    df_reset = quant.reset_index()
    N_S = len(stats_ref)
    stats_ref_val = stats_ref.iloc[np.repeat(np.arange(N_S),
                                             N_L)].transpose().values
    quant_rel = (quant - stats_ref_val).abs()
    quant_rel["error"] *= 100
    quant["error"] *= 100

    # else:
    # table = quant_describe[["mean", "std", "min"]]

    # formaters =
    try:
        # utils.to_latex(dirname, quant, table_format, is_vgg=True)
        utils.to_latex(dirname, quant_rel, table_format, is_vgg=True)
    except:
        pass
    df_plot = pd.melt(df_reset, id_vars='draw')

    df_reset_rel = quant_rel.reset_index()
    df_plot_rel = pd.melt(df_reset_rel, id_vars="draw")

    rp = sns.relplot(
        data=df_plot_rel.pivot(
            index="draw",
            columns=col_order).min(axis=0).to_frame(name="value"),
        #col='log_mult',
        hue='set',
        hue_order=["train", "test"],
        #dodge=False,
        col='stat',
        col_order=["loss", "error"],
        #col='set',
        #style='layer',
        #col='log_mult',
        x='layer',
        y='value',
        kind='line',
        ci='sd',
        palette=palette,
        #ax=axes[0],
        #kind='line',
        #ylabel='%',
        #ci=100,
        #col_wrap=2,
        facet_kws={
            'sharey': False,
            'sharex': True
        })
    rp.axes[0, 0].set_title("Loss")
    rp.axes[0, 0].set_ylabel("absolute delta loss")

    rp.axes[0, 1].set_title("Error")
    rp.axes[0, 1].set_ylabel("absolute delta error (%)")

    rp.legend.set_title("Datasets")
    # rp.fig.set_size_inches(11, 4)
    #rp.axes[0,0].margins(.05)
    #rp.axes[0,1].margins(.05)
    xlabels = [
        "0", "conv1", "conv2", "conv3", "conv4", "conv5", "conv6", "conv7",
        "conv8", "fc1", "fc2"
    ]
    rp.set(xticks=range(0, len(xlabels)))
    # rp.set_xticklabels(xlabels)
    # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels))
    # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels))

    rp.set_xticklabels(xlabels, rotation=30)
    # rp.axes[0,0].set_xticklabels(xlabels, rotation=30)
    # rp.axes[0,1].set_xticklabels(xlabels, rotation=30)
    #rp.set_xticks(len(xlabels))
    #rp.set_xlabels(xlabels)

    if args_model is not None:
        rp.fig.suptitle("(A) VGG {}".format(args_model.dataset.upper()))

    plt.savefig(fname=os.path.join(dirname, 'relplot.pdf'),
                bbox_inches="tight")

    plt.figure()
    rp = sns.relplot(data=df_plot.pivot(
        index="draw", columns=col_order).min(axis=0).to_frame(name="value"),
                     hue='set',
                     hue_order=["train", "test"],
                     col='stat',
                     col_order=["loss", "error"],
                     x='layer',
                     y='value',
                     kind='line',
                     facet_kws={
                         'sharey': False,
                         'sharex': True
                     })
    df_ref = df_plot.query('layer==0')
    rp.axes[0, 0].set_title("Loss")
    rp.axes[0, 0].set_ylabel("loss")

    rp.axes[0, 1].set_title("Error")
    rp.axes[0, 1].set_ylabel("error (%)")

    plt.savefig(fname=os.path.join(dirname, 'rel_plot.pdf'))

    fig = plt.figure()
    df_reset = quant.notnull().reset_index()
    df_plot = pd.melt(df_reset, id_vars='draw')
    g = sns.relplot(
        data=df_plot,
        #col='',
        #hue='set',
        col='stat',
        x='layer',
        y='value',
        kind='line',
        ci=None,
        #col_wrap=2,
        facet_kws={
            'sharey': False,
            'sharex': True
        })
    g.fig.subplots_adjust(top=0.9, left=1 / g.axes.shape[1] * 0.1)
    if args_model is not None and args is not None:
        width = args_model.width
        if width is None:
            if args_model.dataset == "mnist":
                width = 245  # WARNING hard coded
        removed = "width / {}".format(args.fraction) if hasattr(
            args, 'fraction') and args.fraction is not None else args.remove
        g.fig.suptitle('ds = {}, width = {}, removed = {}, draw = {}'.format(
            args_model.dataset, width, removed, args.ndraw))
    g.set(yscale='linear')
    plt.savefig(fname=os.path.join(dirname, 'plot.pdf'))
    g.set(yscale='log')
    plt.savefig(fname=os.path.join(dirname, 'plot_log.pdf'))

    plt.close('all')
    return
def process_df(quant,
               dirname,
               stats_ref=None,
               args=None,
               args_model=None,
               save=True):

    global table_format
    idx = pd.IndexSlice
    #losses = quant.loc[:, idx[:, '#loss']]
    #errors = quant.loc[:, idx[:, 'error']]

    #col_order = ["layer", "set", "stat"]
    col_order = ["stat", "set", "layer"]
    if quant.columns.names != col_order:
        # the order is
        # perform pivot
        quant = pd.melt(quant.reset_index(),
                        id_vars="draw").pivot(index="draw",
                                              columns=col_order,
                                              values="value")
    idx_order = ["stat", "set"]
    if stats_ref.index.names != idx_order:
        stats_ref = stats_ref.reorder_levels(idx_order).sort_index(axis=0)

    quant_describe = quant.groupby(level=["stat", "set"],
                                   axis=1,
                                   group_keys=False).describe()
    if save:
        quant.to_csv(os.path.join(dirname, 'quant.csv'))
        if stats_ref is not None:
            stats_ref.to_csv(os.path.join(dirname, 'stats_ref.csv'))
        quant_describe.to_csv(os.path.join(dirname, 'describe.csv'))

    # table_err_train = table["error"]["train"]
    #quant.loc[:, Idx[:, :, "error"]] *= 100
    if len(stats_ref.keys()) == 1:
        stats_ref = stats_ref[stats_ref.keys()[0]]
    #quant["error"] *= 100
    #stats_ref_copy  = stats_ref.copy()
    #stats_ref_copy["error"] = stats_ref["error"] * 100
    stats_ref.sort_index(axis=0, inplace=True)
    quant.sort_index(axis=1, inplace=True)
    #losses.to_csv(os.path.join(dirname, 'losses.csv'))
    #errors.to_csv(os.path.join(dirname, 'errors.csv'))
    N_L = len(quant.columns.unique(level="layer"))  # number of layers
    #N_sets = len(quant.columns.unique(level="set"))
    N_sets = 2  # only train and test
    palette = sns.color_palette(n_colors=N_sets)

    #losses.describe().to_csv(os.path.join(dirname, 'losses_describe.csv'))
    df_reset = quant.reset_index()
    #relative quantities
    #N_L = len(quant.columns.unique(level="layer")) -1 # number of hidden layers
    N_S = len(stats_ref)
    stats_ref_val = stats_ref.iloc[np.repeat(np.arange(N_S), N_L)].values
    quant_rel = (quant.loc[:, Idx[:, :, :]] - stats_ref_val).abs()
    quant_rel["error"] *= 100
    quant["error"] *= 100

    try:
        # utils.to_latex(dirname, quant, table_format)
        utils.to_latex(dirname, quant_rel, table_format)
    except:
        pass

    #quant_rel["error"] *= 100
    #errors.describe().to_csv(os.path.join(dirname, 'errors_describe.csv'))
    #f, axes = plt.subplots(1, 2, figsize=[10., 5.])
    df_reset = quant.reset_index()
    df_plot = pd.melt(df_reset, id_vars='draw')
    df_reset_rel = quant_rel.reset_index()
    df_plot_rel = pd.melt(df_reset_rel, id_vars="draw")
    rp = sns.relplot(
        #data = df_plot.query('layer > 0'),
        data=df_plot_rel,
        #col='log_mult',
        hue='set',
        hue_order=["train", "test"],
        #dodge=False,
        col='stat',
        col_order=["loss", "error"],
        #col='set',
        #style='layer',
        #col='log_mult',
        x='layer',
        y='value',
        kind='line',
        ci='sd',
        palette=palette,
        #ax=axes[0],
        #kind='line',
        #ylabel='%',
        #ci='sd',
        #col_wrap=2,
        facet_kws={
            'sharey': False,
            'sharex': True
        })
    rp.axes[0, 0].set_title("Loss")
    rp.axes[0, 0].set_ylabel("absolute delta loss")
    rp.axes[0, 1].set_title("Error")
    rp.axes[0, 1].set_ylabel("absolute delta error (%)")

    rp.legend.set_title("Datasets")
    # rp.fig.set_size_inches(11,4)
    #rp.axes[0,0].margins(.05)
    #rp.axes[0,1].margins(.05)
    # rp.legend.set_title("Datasets")
    # rp.fig.set_size_inches(12, 4.5)
    # rp.axes[0,0].margins(.05)
    # rp.axes[0,1].margins(.05)
    rp.set(xticks=range(N_L))
    # xlabels=np.arange(N_L)
    # rp.axes[0,0].set_xticklabels(np.arange(N_L))
    # rp.axes[0,1].set_xticklabels(np.arange(N_L))
    #rp.set_xticks(len(xlabels))
    # rp.set_xlabels(xlabels)
    rp.axes[0, 0].set_xlabel("layer index l")
    rp.axes[0, 1].set_xlabel("layer index l")

    if args_model is not None:
        rp.fig.suptitle("(A) FCN {}".format(args_model.dataset.upper()))

    sns.lineplot(
        #data=rel_losses.min(axis=0).to_frame(name="loss"),
        data=df_plot_rel.query("stat=='loss'").pivot(
            index="draw",
            columns=col_order).min(axis=0).to_frame(name="value"),
        #hue="width",
        hue="set",
        hue_order=["train", "test"],
        #col="stat",
        #col_order=["loss", "error"],
        x="layer",
        y="value",
        #kind='line',
        #legend="full",
        #style='set',
        legend=False,
        ax=rp.axes[0, 0],
        alpha=0.5,
        #style='layer',
        #markers=['*', '+'],
        dashes=[(2, 2), (2, 2)],
    )
    for ax in rp.axes[0, 0].lines[-2:]:  # the last two
        ax.set_linestyle('--')

    sns.lineplot(
        #data=rel_losses.min(axis=0).to_frame(name="loss"),
        data=df_plot_rel.query("stat=='error'").pivot(
            index="draw",
            columns=col_order).min(axis=0).to_frame(name="value"),
        #hue="width",
        hue="set",
        hue_order=["train", "test"],
        #col="stat",
        #col_order=["loss", "error"],
        x="layer",
        y="value",
        #kind='line',
        #legend="full",
        #style='set',
        legend=False,
        ax=rp.axes[0, 1],
        alpha=0.5,
        #palette=sns.color_palette(n_colors=N_L),
        #style='layer',
        markers=True,
        dashes=[(2, 2), (2, 2)],
    )
    # rp.axes[0,1].lines[-1].set_linestyle('--')

    for ax in rp.axes[0, 1].lines[-2:]:  # the last two
        ax.set_linestyle('--')
    #if stats_ref is not None:
    plt.savefig(fname=os.path.join(dirname, 'relplot.pdf'),
                bbox_inches="tight")

    plt.figure()
    #df_reset = quant.().reset_index()
    #df_plot = pd.melt(df_reset, id_vars='draw')
    bp = sns.relplot(
        data=df_plot.pivot(
            index="draw",
            columns=col_order).min(axis=0).to_frame(name="value"),
        #col='log_mult',
        hue='set',
        hue_order=["train", "test"],
        #dodge=False,
        col='stat',
        col_order=["loss", "error"],
        #col_order=["train", "test", "val"],
        #kcol="set",
        #col='set',
        #style='layer',
        #col='log_mult',
        x='layer',
        y='value',
        kind='line',
        #ci=100,
        #ax=axes[0],
        #kind='line',
        #ylabel='%',
        #ci=100,
        #col_wrap=2,
        facet_kws={
            'sharey': False,
            'sharex': True
        })
    df_ref = df_plot.query('layer==0')
    bp.axes[0, 0].set_title("Loss")
    bp.axes[0, 0].set_ylabel("loss")

    bp.axes[0, 1].set_title("Error")
    bp.axes[0, 1].set_ylabel("absolute error (%)")
    #bp.axes[0,0].plot(quant.columns.levels("layer"), quant.loc[1, (0, "loss")], color=red, label='')

    plt.savefig(fname=os.path.join(dirname, 'min_plot.pdf'))

    fig = plt.figure()
    df_reset = quant.notnull().reset_index()
    df_plot = pd.melt(df_reset, id_vars='draw')
    g = sns.relplot(
        data=df_plot,
        #col='',
        #hue='set',
        col='stat',
        x='layer',
        y='value',
        kind='line',
        ci=None,
        #col_wrap=2,
        facet_kws={
            'sharey': False,
            'sharex': True
        })
    g.fig.subplots_adjust(top=0.9, left=1 / g.axes.shape[1] * 0.1)
    if args_model is not None and args is not None:
        width = args_model.width
        if width is None:
            if args_model.dataset == "mnist":
                width = 245  # WARNING hard coded
        removed = "width / {}".format(args.fraction) if hasattr(
            args, 'fraction') and args.fraction is not None else args.remove
        g.fig.suptitle('ds = {}, width = {}, removed = {}, draw = {}'.format(
            args_model.dataset, width, removed, args.ndraw))
    g.set(yscale='linear')
    plt.savefig(fname=os.path.join(dirname, 'plot.pdf'))
    g.set(yscale='log')
    plt.savefig(fname=os.path.join(dirname, 'plot_log.pdf'))

    plt.close('all')
    return