Пример #1
0
 def make_batch_logs(self, out, y, loss):
     out, y = to_np(out), to_np(y)
     metrics = self.compute_metrics(out, y)
     metrics['loss'] = to_np(loss).item()
     logs = {'stage': 'batch',
             'metrics': metrics,
             'opt_state': self.get_optimizer_parameters()}
     return logs
Пример #2
0
    def manifold(self, epoch):
        save_dir = os.path.join(self.root, self.result_dir, self.dataset, self.model_name)
        self.load(epoch)
        self.G.eval()
        self.E.eval()
        self.FC.eval()

        color_vec = []
        Z = []
        color = [
            'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
            'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
            'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']

        for iter, (X, label) in enumerate(self.valid_loader):
            X = utils.to_var(X)
            label = utils.to_var(label)

            z_mu, z_sigma = self.E(self.FC(X))
            X_reconstruc = self.G(z_mu)

            Z += [x for x in utils.to_np(z_mu)]
            color_vec += [x for x in utils.to_np(label)]

        self.G.train()
        self.E.train()
        self.FC.train()

        Z = np.array(Z)

        cmap = plt.get_cmap('gnuplot')
        cmap = plt.cm.jet
        cmaplist = [cmap(i) for i in range(cmap.N)]
        cmap = cmap.from_list('Custom cmap', cmaplist, cmap.N)

        fig, ax = plt.subplots(1, 1, figsize=(6, 6))
        colors = [plt.cm.jet(float(i + 1) / 10) for i in range(10)]
        # import matplotlib.cm as cm
        # colors = cm.rainbow(np.linspace(0, 2, 20))
        for k in range(10):
            X = []
            Y = []
            for i, z in enumerate(Z):
                if color_vec[i] == k:
                    X.append(z[0])
                    Y.append(z[1])
            marker = ["*", "^"]
            ax.scatter(X, Y, c=colors[k], marker=marker[k % 2], cmap=cmap, label=str(k), s=20)
            # ax.scatter(Z[:5000, 0], Z[:5000, 1], c=color_vec[:5000], label= color_vec[:5000], marker='.', cmap=cmap, )
        plt.legend(loc='upper right', ncol=1, borderaxespad=0.)
        plt.xlim(-4, 4)
        plt.ylim(-4, 4)
        plt.xticks(fontsize=20)
        plt.yticks(fontsize=20)
        fig.savefig(os.path.join(save_dir, 'Z_mu' + '_epoch%03d' % epoch + '.png'), transparent=True)
        plt.close()
Пример #3
0
 def act(self, obs, sample=False, propensity=False):
     obs = torch.FloatTensor(obs).to(self.device)
     obs = obs.unsqueeze(0)
     dist = self.actor(obs)
     action = dist.sample() if sample else dist.mean
     prob = dist.log_prob(action).sum(dim=-1, keepdim=True).exp()
     action = action.clamp(*self.action_range)
     assert action.ndim == 2 and action.shape[0] == 1
     if propensity:
         return utils.to_np(action[0]), utils.to_np(prob[0])
     else:
         return utils.to_np(action[0])
Пример #4
0
 def log_weights_distribution(self, named_params, steps_completed):
     if named_params is None:
         return
     for tag, value in named_params:
         tag = tag.replace('.', '/')
         if any(substring in tag for substring in self.logged_params):
             self.tblogger.histogram_summary(tag, to_np(value),
                                             steps_completed)
         if self.log_gradients:
             self.tblogger.histogram_summary(tag + '/grad',
                                             to_np(value.grad),
                                             steps_completed)
     self.tblogger.sync_to_file()
Пример #5
0
def train(epoch_idx, net, train_loader, lr, logger, n_class):
    net.cuda()
    net.train()

    base_params = list(map(id, net.base_net.parameters()))
    top_params = filter(lambda p: id(p) not in base_params, net.parameters())

    optimizer = torch.optim.SGD([{
        'params': top_params
    }, {
        'params': net.base_net.parameters(),
        'lr': lr * 0.1
    }],
                                lr=lr,
                                momentum=0.9,
                                weight_decay=0.00004)

    criterion = nn.CrossEntropyLoss(ignore_index=-1)

    len_batch = len(train_loader)

    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.cuda(), target.cuda()
        optimizer.zero_grad()

        score = net(data)
        loss = criterion(score, target)
        loss.backward()
        optimizer.step()

        _, predicted = score.max(1)
        predicted, target = to_np(predicted), to_np(target)
        acc, acc_cls, mean_iu = label_accuracy_score(target, predicted,
                                                     n_class)
        info = {
            'acc': acc,
            'acc_cls': acc_cls,
            'mean_iu': mean_iu,
            'loss': loss.data[0]
        }
        for tag, value in info.items():
            logger.scalar_summary(tag, value,
                                  len_batch * epoch_idx + batch_idx + 1)
        print(('train', batch_idx, epoch_idx))

    if (epoch_idx + 1) % 10 == 0:
        n = (epoch_idx + 1) / 10
        state = net.state_dict()
        torch.save(state, './deeplab_epoch_' + str(n) + '.pth')
Пример #6
0
    def eval(
        self,
        mode=None,
        batch_size=None,
        output_dir=None
    ):
        # Sets the module in evaluation mode.
        self.NetG.eval()
        self.NetD.eval()
        if batch_size is None:
            batch_size = self.data_loader.batch_size
        nrows = batch_size // 8
        viz_labels = np.array([num for _ in range(nrows) for num in range(8)])
        viz_labels = torch.LongTensor(viz_labels).to(self.device)
        with torch.no_grad():
            if self.name == 'cgan':
                viz_tensor = torch.randn(batch_size, self.latent_dim, device=self.device)
                viz_sample = self.NetG(viz_tensor, viz_labels) # generated image from random noise
            elif self.name == 'infogan':
                viz_tensor = torch.randn(batch_size, self.latent_dim, device=self.device)
                labels_onehot = self._to_onehot(viz_labels, dim=self.classes)
                z_code = torch.zeros((batch_size, self.code_dim), device=self.device)
                if mode is not None:
                    for i in range(batch_size):
                        z_code[i, mode] = 4. * i / batch_size - 2.
                viz_sample = self.NetG(viz_tensor, labels_onehot, z_code)

            viz_vector = utils.to_np(viz_tensor).reshape(batch_size, self.latent_dim)
            cur_time = datetime.now().strftime("%Y%m%d-%H%M%S")
            np.savetxt(os.path.join(output_dir, 'vec_{}.txt'.format(cur_time)), viz_vector)
            vutils.save_image(viz_sample, os.path.join(output_dir, 'img_{}.png'.format(cur_time)), nrow=8, normalize=True)
            logging.info(f'\nSaving evaluation image to {output_dir}...')
Пример #7
0
    def eval(self,
             mode=None,
             batch_size=None):
        self.netG.eval()
        self.netD.eval()
        if batch_size is None:
            batch_size = self.data_loader.batch_size
        nrows = batch_size // 8
        viz_labels = np.array([num for _ in range(nrows) for num in range(8)])
        viz_labels = torch.LongTensor(viz_labels).to(self.device)

        with torch.no_grad():
            if self.infogan:
                viz_tensor = torch.randn(batch_size, self.latent_dim, device=self.device)
                labels_onehot = self._to_onehot(viz_labels, dim=self.classes)
                z_style = torch.zeros((batch_size, self.style_dim), device=self.device)
                if mode is not None:
                    for i in range(batch_size):
                        z_style[i, mode] = 4. * i / batch_size - 2.
                viz_sample = self.netG(viz_tensor, labels_onehot, z_style)
            else:
                viz_tensor = torch.randn(batch_size, self.latent_dim, 1, 1, device=self.device)
                viz_sample = self.netG(viz_tensor, viz_labels)
            viz_vector = utils.to_np(viz_tensor).reshape(batch_size, self.latent_dim)
            cur_time = datetime.now().strftime("%Y%m%d-%H%M%S")
            np.savetxt('vec_{}.txt'.format(cur_time), viz_vector)
            vutils.save_image(viz_sample, 'img_{}.png'.format(cur_time), nrow=8, normalize=True)
Пример #8
0
def generateResults(encoder_decoder: EncoderDecoder, data_loader,
                    resultFilename, input_tokens_list):
    idx_to_tok = encoder_decoder.lang.idx_to_tok
    all_output_seqs = []
    all_target_seqs = []

    for batch_idx, (input_idxs, target_idxs, _,
                    _) in enumerate(tqdm(data_loader)):
        input_lengths = (input_idxs != 0).long().sum(dim=1)

        sorted_lengths, order = torch.sort(input_lengths, descending=True)
        input_variable = Variable(input_idxs[order, :][:, :max(input_lengths)])
        target_variable = Variable(target_idxs[order, :])

        output_log_probs, output_seqs = encoder_decoder(
            input_variable, list(sorted_lengths))
        print(output_seqs.size())
        all_output_seqs.extend(trim_seqs(output_seqs))
        all_target_seqs.extend([list(seq[seq > 0])]
                               for seq in to_np(target_variable))

    with open(resultFilename, 'w') as fo:
        for seq, input_tokens in zip(all_output_seqs, input_tokens_list):
            print(type(seq))
            #seq = seq.data.view(-1)
            eos_idx = seq.index(2) if 2 in seq else seq
            string = seq_to_string(seq[:eos_idx + 1],
                                   idx_to_tok,
                                   input_tokens=None)
            fo.write(string + '\n')

    return None
    def ss_preds_var(self, obs, next_obs, action):
        # TODO (chongyi zheng):
        #  do we need next_obs (forward) or action (inverse) - measure the prediction error,
        #  or we just need to predictions - measure the prediction variance?
        #  task identity inference - threshold or statistical hypothesis testing like: https://arxiv.org/abs/1902.09434
        assert obs.shape == next_obs.shape and obs.shape[0] == next_obs.shape[0] == action.shape[0], \
            "invalid transitions shapes!"

        # TODO (chongyi zheng): Do we need to set agent mode to evaluation before prediction?
        with torch.no_grad():
            obs = torch.FloatTensor(obs).to(self.device) \
                if not isinstance(obs, torch.Tensor) else obs.to(self.device)
            next_obs = torch.FloatTensor(next_obs).to(self.device) \
                if not isinstance(next_obs, torch.Tensor) else next_obs.to(self.device)
            action = torch.FloatTensor(action).to(self.device) \
                if not isinstance(action, torch.Tensor) else action.to(self.device)

            if len(obs.size()) == 3 or len(obs.size()) == 1:
                obs = obs.unsqueeze(0)
                next_obs = next_obs.unsqueeze(0)
                action = action.unsqueeze(0)

            # prediction variances
            if self.use_fwd:
                preds = self.ss_fwd_pred_ensem(obs, action)

            if self.use_inv:
                # (chongyi zheng): we compute logits variance here
                preds = self.ss_inv_pred_ensem(obs, next_obs)

            # (chongyi zheng): the same as equation (1) in https://arxiv.org/abs/1906.04161
            preds = torch.stack(preds.chunk(self.num_ensem_comps, dim=0))
            preds_var = torch.var(preds, dim=0).sum(dim=-1)

            return utils.to_np(preds_var)
Пример #10
0
def main():

    model = Deeplab()

    dataset = VOC2012ClassSeg('./dataset', split='train', transform=True)

    val_loader = torch.utils.data.DataLoader(dataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=1,
                                             pin_memory=True)

    # n_class = len(dataset.class_names)

    # model_file = ''
    # moda_data = torch.load(model_file)
    # try:
    #   model.load_state_dict(model_data)
    # except Exception:
    #   model.load_state_dict(model_data['model_state_dict'])
    # if torch.cuda.is_available():
    #   model.cuda()

    model.eval()

    label_trues, label_preds = [], []

    for batch_idx, (data, target) in enumerate(val_loader):

        # if torch.cuda.is_available():
        #   data, target = data.cuda(), target.cuda()
        data, target = Variable(data, volatile=True), Variable(target)
        score = model(data)
        _, predicted = score.max(1)
        predicted = to_np(predicted)
        target = to_np(target)
        for lt, lp in zip(target, predicted):
            label_trues.append(lt)
            label_preds.append(lp)
        if batch_idx == 5:
            break
    n_class = 21
    print(len(label_preds))
    metrics = label_accuracy_score(label_trues, label_preds, n_class=n_class)
    metrics = np.array(metrics)
    metrics *= 100
    print(metrics)
Пример #11
0
def show2(epoch):
    encoder.load_state_dict(
        torch.load(model_dir + 'encoder_{:d}.pkl'.format(epoch)))
    decoder.load_state_dict(
        torch.load(model_dir + 'decoder_{:d}.pkl'.format(epoch)))
    encoder.train()
    decoder.train()
    cover, yuv = getCoverExample('../pics_lfw/1.JPEG', params.input_size)
    secret = getSecretExample('../pics_lfw/4.JPEG', params.input_size)
    cover = transform(cover)
    secret = transform(secret)
    cover.resize_(1, 1, params.input_size, params.input_size)
    secret.resize_(1, 1, params.input_size, params.input_size)
    concat = torch.cat([secret, cover], dim=1)
    if params.use_cuda:
        concat = concat.cuda()

    concat = Variable(concat)
    stego = encoder(concat)
    stego = to_np(stego)
    stego = (((stego - stego.min()) * 255) /
             (stego.max() - stego.min())).astype(np.uint8)
    print(np.shape(stego))
    stego = stego[0][0]
    stego = Image.fromarray(stego, 'L')
    stego.show()
    yuv[:, :, 0] = stego
    img = Image.fromarray(yuv, 'YCbCr')
    stego = img.convert('RGB')

    stego.save('./lfw_mssim_results/stego.bmp')
    stego, _ = getCoverExample('./lfw_mssim_results/stego.bmp',
                               params.input_size)

    stego = transform(stego)
    stego.resize_(1, 1, params.input_size, params.input_size)
    stego = stego.cuda()
    stego = Variable(stego)
    secret2 = decoder(stego)
    secret2 = to_np(secret2)
    secret2 = (((secret2 - secret2.min()) * 255) /
               (secret2.max() - secret2.min())).astype(np.uint8)
    secret2 = secret2[0][0]
    secret2 = Image.fromarray(secret2, 'L')
    secret2.show()
    secret2.save('./lfw_mssim_results/secret.png')
Пример #12
0
 def act(self, obs, sample=False):
     obs = torch.FloatTensor(obs).to(self.device)
     obs = obs.unsqueeze(0)
     dist = self.actor(obs)
     action = dist.sample() if sample else dist.mean
     action = action.clamp(*self.action_range)
     assert action.ndim == 2 and action.shape[0] == 1
     return utils.to_np(action[0])
Пример #13
0
 def act(self, obs, sample=False):
     grid_state = torch.from_numpy(obs).unsqueeze(0).long().to(self.device)
     text_state = torch.from_numpy(get_text_state(grid_state, self.indexed_embedding_map)).float().to(self.device)
     dist = self.actor(self.fusion((grid_state, text_state)))
     action = dist.sample() if sample else dist.mean
     action = action.clamp(*self.action_range)
     # assert action.ndim == 2 and action.shape[0] == 1
     return utils.to_np(action[0])
Пример #14
0
def evaluate(encoder_decoder: EncoderDecoder, data_loader):

    loss_function = torch.nn.NLLLoss(
        ignore_index=0, reduce=False
    )  # what does this return for ignored idxs? same length output?

    losses = []
    all_output_seqs = []
    all_target_seqs = []

    for batch_idx, (input_idxs, target_idxs, _,
                    _) in enumerate(tqdm(data_loader)):
        input_lengths = (input_idxs != 0).long().sum(dim=1)

        sorted_lengths, order = torch.sort(input_lengths, descending=True)

        input_variable = Variable(input_idxs[order, :][:, :max(input_lengths)],
                                  volatile=True)
        target_variable = Variable(target_idxs[order, :], volatile=True)
        batch_size = input_variable.shape[0]

        output_log_probs, output_seqs = encoder_decoder(
            input_variable, list(sorted_lengths))
        all_output_seqs.extend(trim_seqs(output_seqs))
        all_target_seqs.extend([list(seq[seq > 0])]
                               for seq in to_np(target_variable))

        flattened_log_probs = output_log_probs.view(
            batch_size * encoder_decoder.decoder.max_length, -1)
        batch_losses = loss_function(flattened_log_probs,
                                     target_variable.contiguous().view(-1))
        losses.extend(list(to_np(batch_losses)))

    mean_loss = len(losses) / sum(losses)
    """
    for i in range(20):
        print(all_target_seqs[i])
        print(all_output_seqs[i])
        print('*'*80)
    """

    bleu_score = corpus_bleu(all_target_seqs,
                             all_output_seqs,
                             smoothing_function=SmoothingFunction().method2)
    print('BLEU SCORE: ' + str(bleu_score))
    return mean_loss, bleu_score
Пример #15
0
 def log_weights_filter_magnitude(self, model, epoch, multi_graphs=False):
     """Log the L1-magnitude of the weights tensors.
     """
     for name, param in model.state_dict().items():
         if param.dim() in [4]:
             self.tblogger.list_summary('magnitude/filters/' + name,
                                        list(to_np(norm_filters(param))),
                                        epoch, multi_graphs)
     self.tblogger.sync_to_file()
Пример #16
0
 def act(self, obs, sample=False):
     obs = torch.FloatTensor(obs).to(self.device)
     obs = obs.unsqueeze(0)
     dist = self.actor(obs)
     # using discrete action space
     action = dist.sample() if sample else dist.probs.argmax(dim=-1,
                                                             keepdim=True)
     # action = action.clamp(*self.action_range)
     # assert action.ndim == 2 and action.shape[0] == 1
     return utils.to_np(action[0])
Пример #17
0
 def act(self, observation, desired_goal, sample=False):
     observation = torch.FloatTensor(observation).to(
         self.device).unsqueeze(0)
     desired_goal = torch.FloatTensor(desired_goal).to(
         self.device).unsqueeze(0)
     dist = self.actor(observation, desired_goal)
     action = dist.sample() if sample else dist.mean
     action = action.clamp(*self.action_range)
     assert action.ndim == 2 and action.shape[0] == 1
     return utils.to_np(action[0])
Пример #18
0
    def get_mse(self, epoch):
        # self.load(epoch)
        self.G.eval()
        self.E.eval()
        self.FC.eval()
        self.C.eval()
        critirion = nn.MSELoss()
        count = 0
        test_pred = []
        test_true = []

        for X, labels in self.valid_loader:
            count += 1
            X = utils.to_var(X)
            labels = utils.to_var(labels)
            mu, sigma = self.E(self.FC(X))
            z_class = self.C(mu)
            X_hat = self.G(mu)
            loss = (X_hat.view(X_hat.size(0), -1).cpu().data.numpy() - X.view(X.size(0), -1).cpu().data.numpy()) ** 2
            loss = np.mean(loss, 1)
            _, test_argmax = torch.max(z_class, 1)


            if count == 1:
                final_loss = loss
                test_pred = utils.to_np(test_argmax.squeeze())
                print(test_pred)
                test_true = utils.to_np(labels.squeeze())
                print(test_true)
            else:
                final_loss = np.concatenate((final_loss, loss), 0)
                test_pred = np.concatenate((test_pred, utils.to_np(test_argmax.squeeze())), axis=0)
                test_true = np.concatenate((test_true, utils.to_np(labels.squeeze())), axis=0)

        print(final_loss.shape)
        test_accuracy = metrics.accuracy_score(test_true, test_pred)



        print("Final mse mean is %.5f, std is %.5f" % (np.mean(final_loss), np.std(final_loss)))
        print("Accuracy is %.5f" % (test_accuracy))
Пример #19
0
def test(epoch_idx, net, test_loader, logger, n_class):
    net.cuda()
    net.eval()
    len_batch = len(test_loader)

    visualizations = []

    hist = np.zeros((n_class, n_class))

    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.cuda(), targets.cuda()
            output = net(inputs)
            _, predicted = output.max(1)
            predicted, targets = to_np(predicted), to_np(targets)
            print(('test', batch_idx, epoch_idx))
            hist += fast_hist(targets.flatten(), predicted.flatten(), n_class)
        miou = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
        miou = np.sum(miou) / len(miou)
        logger.scalar_summary('Mean iou', miou, epoch_idx)
        print(('Mean iou: ', miou))
Пример #20
0
 def act(self, obs, sample=False):
     pix_obs = torch.FloatTensor(obs['pix_obs']).to(self.device)
     pix_obs = pix_obs.unsqueeze(0)
     state_low_obs = None
     if self.lstate_shape != 0:
         state_low_obs = torch.FloatTensor(obs['state_low_obs']).to(
             self.device)
         state_low_obs = torch.unsqueeze(state_low_obs, 0)
     dist = self.actor(pix_obs, state_low_obs)
     action = dist.sample() if sample else dist.mean
     action = action.clamp(*self.action_range)
     assert action.ndim == 2 and action.shape[0] == 1
     return utils.to_np(action[0])
Пример #21
0
    def multi_step(self,
                   agent,
                   n_steps=None,
                   single_episode=False,
                   video_file_suffix=None):
        """
            Performs multiple steps (either n_steps or a single episode) in the environment
            and returns tensors with all the (s, a, ns) transitions. Either n_steps or single_episode
            must be specified.

            Args:
                agent (object): agent with get_action(state) method returning an action for the agent
                n_steps (int, optional, default=None): number of steps to take in the environment
                single_episode (boolean, optional, default=False): whether to perform only one episode
                video_file_suffix (string, optional, default=None): Suffix added to the end of the video file name

            Returns:
                (s, a, s') staked transitions

                staked all_old_states (torch Tensor[n_steps, d_state])
                staked all_actions (torch Tensor[n_steps, d_action])
                staked all_next_states (torch Tensor[n_steps, d_state])
        """
        assert (n_steps is None) ^ (single_episode is False)

        all_old_states = []
        all_next_states = []
        all_actions = []

        if single_episode:
            n_steps = sys.maxsize

        for i in range(1, n_steps + 1):
            # FIXME: are the view-numel things necessary?
            action = agent.get_action(self.state.view(
                1, self.state.numel())).to('cpu')
            if self.torch_np_conversion:
                state, next_state, done = self.step(
                    to_np(action), video_file_suffix=video_file_suffix)
            else:
                state, next_state, done = self.step(
                    action, video_file_suffix=video_file_suffix)

            all_old_states.extend(state.view(1, state.numel()))
            all_actions.extend(action.view(1, action.numel()))
            all_next_states.extend(next_state.view(1, next_state.numel()))

            if single_episode and done:
                break
        return torch.stack(all_old_states), torch.stack(
            all_actions), torch.stack(all_next_states)
Пример #22
0
    def __getitem__(self, index):
        
        image_name = self.image_list[index]
        label_name = self.label_list[index]

        image = Image.open(os.path.join(self.image_path, image_name))
        label = Image.open(os.path.join(self.label_path, label_name))

        # Transform image, label in forms
        if self.transform is not None:
            image = self.transform(image)
        label = to_tensor(to_np(label)).long()
        
        return image, label
    def act(self, obs, exploration=False):
        # TODO (chongyi zheng)
        if exploration and np.random.rand() < self.exploration_rate:
            action = np.random.randint(self.action_shape)
        else:
            with torch.no_grad():
                obs = torch.FloatTensor(obs).to(self.device)
                obs = obs.unsqueeze(0)
                prob, _ = self.q_net(obs)
                q_values = (prob * self.atoms).sum(-1)
                # greed action
                action = utils.to_np(q_values.argmax(dim=-1))

        return action
Пример #24
0
 def _request_transformation(self, _from, _to):
     topic = 'FrameTransformation.{}.{}'.format(_from, _to)
     self.subscription.subscribe(topic)
     try:
         msg = self.channel.consume(timeout=5.0)
         self.subscription.unsubscribe(topic)
     except:
         self.subscription.unsubscribe(topic)
         return False
     transformation = msg.unpack(FrameTransformation)
     if _from not in self.transformations:
         self.transformations[_from] = {}
     self.transformations[_from][_to] = to_np(transformation.tf)
     return True
Пример #25
0
 def act(self, obs, sample=False):
     obs = torch.FloatTensor(obs).to(self.device)
     obs = obs.unsqueeze(0)
     if self.aug_type == "crop":
         obs = self.center_crop(obs)
     elif self.aug_type == "translate":
         pad = (self.image_size - obs.shape[-1]) // 2
         obs = F.pad(obs, [pad, pad, pad, pad])
     else:
         raise ValueError(self.aug_type)
     dist = self.actor(obs)
     action = dist.sample() if sample else dist.mean
     action = action.clamp(*self.action_range)
     assert action.ndim == 2 and action.shape[0] == 1
     return utils.to_np(action[0])
Пример #26
0
        def fit_self(self, X):
            logging.debug(
                f'Reconstructor fit_self() called. Begin to fit {X.shape}')
            X = normalize(X, axis=1)  # unit length
            num_sample = len(X)
            dim = X.shape[1]
            all_idx = np.arange(num_sample)
            # the coef matrix to return
            result_matrix = np.zeros([num_sample, num_sample])
            # the coef matrix in torch
            result_matrix_t = torch.zeros(num_sample,
                                          num_sample).to(self.device)
            # the X in torch
            X_t = torch.from_numpy(X).to(self.device)

            # for each column ticked out
            for i1 in tnrange(num_sample, desc='fit_self', leave=False):
                # idx ticked
                this_idx = np.delete(all_idx, i1).tolist()
                if dim >= num_sample:
                    coef, _ = self.gels(X_t[this_idx, :],
                                        X_t[i1, :].unsqueeze(0))
                    coef.squeeze_()
                else:
                    coef, _ = self.lrfit(X[this_idx, :],
                                         X[i1, :].reshape(1, dim))
                    coef = torch.from_numpy(coef).squeeze().to(self.device)

                # get the largest ones
                val, idx = coef.abs().topk(K)
                # reshape
                tmp = torch.zeros_like(coef)
                tmp.scatter_(0, idx, val * coef[idx].sign())
                # assign
                result_matrix_t[i1, this_idx] = tmp

            # as np
            result_matrix = utils.to_np(result_matrix_t)

            return result_matrix
    def visualize_results(self, epoch, N=0):
        """ visualize the sampled results and save them"""

        save_path = os.path.join(self.save_path, 'visualization')
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        samples = self.model.sample_fixed() if N == 0 else self.model.sampleN(
            N)

        samples_grid = self._make_grid(samples)

        plt.imshow(utils.to_np(samples_grid).transpose(1, 2, 0))
        plt.show()

        torchvision.utils.save_image(samples_grid,
                                     filename=os.path.join(
                                         save_path,
                                         'epoch%03d' % epoch + '.png'))

        logging.info('Sampled images saved.')

        return self
Пример #28
0
    def visualize_results(self, epoch):
        # self.load(199)

        print("visulize..")
        self.G.eval()
        self.E.eval()
        self.FC.eval()

        save_dir = os.path.join(self.root, self.result_dir, 'mixed_gaussian',
                                self.model_name, str(self.args.seed_random))
        print(save_dir)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        # Store results
        Recon = []
        Original = []
        Z = []
        Random = []
        color_vec = []

        for iter, (X, label) in enumerate(self.valid_loader):
            z = utils.to_var(torch.randn(self.batch_size, self.z_dim))
            X = utils.to_var(X)
            label = utils.to_var(label)

            z_mu, z_sigma = self.E(self.FC(X))
            X_reconstruc = self.G(z_mu)
            X_random = self.G(z)

            Original += [x for x in utils.to_np(X)]
            Recon += [x for x in utils.to_np(X_reconstruc)]
            Z += [x for x in utils.to_np(z_mu)]
            Random += [x for x in utils.to_np(X_random)]
            color_vec += [x for x in utils.to_np(label)]

        self.G.train()
        self.E.train()
        self.FC.train()

        Original = np.array(Original)
        Recon = np.array(Recon)
        Z = np.array(Z)
        Random = np.array(Random)

        self.count(Random[:2500])

        cmap = plt.get_cmap('gnuplot')
        cmap = plt.cm.jet
        cmaplist = [cmap(i) for i in range(cmap.N)]
        cmap = cmap.from_list('Custom cmap', cmaplist, cmap.N)

        fig, ax = plt.subplots(1, 1, figsize=(6, 6))
        plt.xlim(-6, 6)
        plt.ylim(-6, 6)
        plt.xticks(fontsize=20)
        plt.yticks(fontsize=20)
        ax.scatter(Original[:, 0],
                   Original[:, 1],
                   c=color_vec,
                   marker='.',
                   cmap=cmap,
                   alpha=0.3)
        fig.savefig(os.path.join(save_dir,
                                 'X_original' + '_epoch%03d' % epoch + '.png'),
                    transparent=True)
        plt.close()

        fig, ax = plt.subplots(1, 1, figsize=(6, 6))
        plt.xlim(-6, 6)
        plt.ylim(-6, 6)
        plt.xticks(fontsize=20)
        plt.yticks(fontsize=20)
        ax.scatter(Recon[:10000, 0],
                   Recon[:10000, 1],
                   c=color_vec[:10000],
                   marker='.',
                   cmap=cmap,
                   alpha=0.3)
        fig.savefig(os.path.join(
            save_dir, 'X_reconstruc' + '_epoch%03d' % epoch + '.png'),
                    transparent=True)
        plt.close()

        fig, ax = plt.subplots(1, 1, figsize=(6, 6))
        plt.xlim(-6, 6)
        plt.ylim(-6, 6)
        plt.xticks(fontsize=20)
        plt.yticks(fontsize=20)
        ax.scatter(Random[:10000, 0],
                   Random[:10000, 1],
                   color='black',
                   marker='.',
                   alpha=0.3)
        fig.savefig(os.path.join(save_dir,
                                 'X_random' + '_epoch%03d' % epoch + '.png'),
                    transparent=True)
        plt.close()

        fig, ax = plt.subplots(1, 1, figsize=(6, 6))
        plt.xlim(-3, 3)
        plt.ylim(-3, 3)
        ax.set_xticks([-3, -2, -1, 0, 1, 2, 3])
        ax.set_yticks([-3, -2, -1, 0, 1, 2, 3])
        plt.xticks(fontsize=20)
        plt.yticks(fontsize=20)
        ax.scatter(Z[:, 0],
                   Z[:, 1],
                   c=color_vec,
                   marker='.',
                   cmap=cmap,
                   alpha=0.3)
        fig.savefig(os.path.join(save_dir,
                                 'Z_mu' + '_epoch%03d' % epoch + '.png'),
                    transparent=True)
        plt.close()
Пример #29
0
def train(model, data_loader, optimizer, epoch, writer):
    """
    Train CapsuleNet model on training set

    Args:
        model: The CapsuleNet model.
        data_loader: An interator over the dataset. It combines a dataset and a sampler.
        optimizer: Optimization algorithm.
        epoch: Current epoch.
    """
    print('===> Training mode')

    num_batches = len(data_loader)  # iteration per epoch. e.g: 469
    total_step = args.epochs * num_batches
    epoch_tot_acc = 0

    # Switch to train mode
    model.train()

    if args.cuda:
        # When we wrap a Module in DataParallel for multi-GPUs
        model = model.module

    start_time = timer()

    for batch_idx, (data, target) in enumerate(tqdm(data_loader,
                                                    unit='batch')):
        batch_size = data.size(0)
        global_step = batch_idx + (epoch * num_batches) - num_batches

        labels = target
        target_one_hot = utils.one_hot_encode(target, length=args.num_classes)
        assert target_one_hot.size() == torch.Size([batch_size, 10])

        data, target = Variable(data), Variable(target_one_hot)

        if args.cuda:
            data = data.cuda()
            target = target.cuda()

        # Train step - forward, backward and optimize
        optimizer.zero_grad()
        output = model(data)  # output from DigitCaps (out_digit_caps)
        loss, margin_loss, recon_loss = model.loss(data, output, target)
        loss.backward()
        optimizer.step()

        # Calculate accuracy for each step and average accuracy for each epoch
        acc = utils.accuracy(output, labels, args.cuda)
        epoch_tot_acc += acc
        epoch_avg_acc = epoch_tot_acc / (batch_idx + 1)

        # TensorBoard logging
        # 1) Log the scalar values
        writer.add_scalar('train/total_loss', loss.data[0], global_step)
        writer.add_scalar('train/margin_loss', margin_loss.data[0],
                          global_step)
        if args.use_reconstruction_loss:
            writer.add_scalar('train/reconstruction_loss', recon_loss.data[0],
                              global_step)
        writer.add_scalar('train/batch_accuracy', acc, global_step)
        writer.add_scalar('train/accuracy', epoch_avg_acc, global_step)

        # 2) Log values and gradients of the parameters (histogram)
        for tag, value in model.named_parameters():
            tag = tag.replace('.', '/')
            writer.add_histogram(tag, utils.to_np(value), global_step)
            writer.add_histogram(tag + '/grad', utils.to_np(value.grad),
                                 global_step)

        # Print losses
        if batch_idx % args.log_interval == 0:
            template = 'Epoch {}/{}, ' \
                    'Step {}/{}: ' \
                    '[Total loss: {:.6f},' \
                    '\tMargin loss: {:.6f},' \
                    '\tReconstruction loss: {:.6f},' \
                    '\tBatch accuracy: {:.6f},' \
                    '\tAccuracy: {:.6f}]'
            tqdm.write(
                template.format(
                    epoch, args.epochs, global_step, total_step, loss.data[0],
                    margin_loss.data[0],
                    recon_loss.data[0] if args.use_reconstruction_loss else 0,
                    acc, epoch_avg_acc))

    # Print time elapsed for an epoch
    end_time = timer()
    print('Time elapsed for epoch {}: {:.0f}s.'.format(epoch,
                                                       end_time - start_time))
Пример #30
0
        optimizer.step()
        training_loss += loss.cpu().data.numpy()[0] * float(inputs.size(0))

    train_acc = counter.acc()
    counter.flush()
    test_loss = 0

    net.eval()
    utils.set_strategy(net, 'running')
    for _, (inputs, labels) in enumerate(testloader):
        inputs, labels = Variable(inputs.cuda(async=True)), Variable(
            labels.cuda(async=True))
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        test_loss += utils.to_np(loss) * float(inputs.size(0))
        counter.add(utils.to_np(outputs), utils.to_np(labels))

    print(
        ' -- Epoch %d | time: %.4f | loss: %.4f | training acc: %.4f validation accuracy: %.4f | lr %.6f --'
        % (epoch, time() - t0, training_loss, train_acc, counter.acc(), lr))

    save_checkpoint(
        {
            'epoch': epoch + 1,
            'state_dict':
            net.module.state_dict() if use_cuda else net.state_dict(),
            'test_accuracy': counter.acc(),
            'optimizer': optimizer.state_dict(),
            'name': args.model,
            'model_args': model_args,