Пример #1
0
def alpha55(df):
    """
    Alpha#55
    (-1 * correlation(rank(((close - ts_min(low, 12)) / (ts_max(high, 12) 
    - ts_min(low, 12)))), rank(volume), 6)) 
    """
    temp1 = (df.close - u.ts_min(df.low, 12))
    temp2 = (u.ts_max(df.high, 12) - u.ts_min(df.low, 12))
    return (-1 * u.corr(u.rank((temp1 / temp2)), u.rank(df.volume), 6))
Пример #2
0
def alpha52(df):
    """
    Alpha#52
    ((((-1 * ts_min(low, 5)) + delay(ts_min(low, 5), 5)) * rank(((sum(returns, 240) 
    - sum(returns, 20)) / 220))) * ts_rank(volume, 5)) 
    """
    temp1 = ((-1 * u.ts_min(df.low, 5)) + u.delay(u.ts_min(df.low, 5), 5))
    temp2 = u.rank(
        ((u.ts_sum(df.returns, 240) - u.ts_sum(df.returns, 20)) / 220))
    return ((temp1 * temp2) * u.ts_rank(df.volume, 5))
Пример #3
0
def alpha61(df):
    """
    Alpha#61
    (rank((vwap - ts_min(vwap, 16.1219))) < rank(correlation(vwap, adv180, 17.9282)))

    Rounded the days to int since partial lookback 
    """
    return (u.rank((df.vwap - u.ts_min(df.vwap, 16))) < u.rank(
        u.corr(df.vwap, u.adv(df, 180), 18)))
Пример #4
0
def alpha65(df):
    """
    Alpha#65
    ((rank(correlation(((open * 0.00817205) + 
    (vwap * (1 - 0.00817205))), sum(adv60, 8.6911), 6.40374)) < rank((open - ts_min(open, 13.635)))) * -1) 
    """
    temp1 = (df.open * 0.00817205) + (df.vwap * (1 - 0.00817205))
    temp2 = u.rank((df.open - u.ts_min(df.open, 14)))
    return ((u.rank(u.corr(temp1, u.ts_sum(u.adv(df, 60), 9), 6)) < temp2) *
            -1)
Пример #5
0
def alpha11(df):
    """
    Alpha#11
    ((rank(ts_max((vwap - close), 3)) + 
    rank(ts_min((vwap - close), 3))) * rank(delta(volume, 3))) 
    """
    temp1 = u.rank(u.ts_max((df.vwap - df.close), 3))
    temp2 = u.rank(u.ts_min((df.vwap - df.close), 3))
    temp3 = u.rank(u.delta(df.volume, 3))
    return temp1 + (temp2 * temp3)
Пример #6
0
def alpha95(df):
    """
    Alpha#95
    (rank((open - ts_min(open, 12.4105))) < Ts_Rank((rank(correlation(sum(((high + low)
    / 2), 19.1351), sum(adv40, 19.1351), 12.8742))^5), 11.7584)) 
    """
    temp1 = u.rank((df.open - u.ts_min(df.open, 12)))
    temp2 = u.corr(u.ts_sum(((df.high + df.low) / 2), 19),
                   u.ts_sum(u.adv(df, 40), 19), 13)
    return (temp1 < u.ts_rank((u.rank(temp2)**5), 12))
Пример #7
0
def alpha94(df):
    """
    Alpha#94
    ((rank((vwap - ts_min(vwap, 11.5783)))^Ts_Rank(correlation(Ts_Rank(vwap,
    19.6462), Ts_Rank(adv60, 4.02992), 18.0926), 2.70756)) * -1) 
    """
    temp1 = u.rank((df.vwap - u.ts_min(df.vwap, 12)))
    temp2 = u.ts_rank(
        u.corr(u.ts_rank(df.vwap, 20), u.ts_rank(u.adv(df, 60), 4), 18), 3)
    return ((temp1**temp2) * -1)
Пример #8
0
def alpha9(df):
    """
    Alpha#9
    ((0 < ts_min(delta(close, 1), 5)) ? delta(close, 1) : 
    ((ts_max(delta(close, 1), 5) < 0) ? delta(close, 1) : (-1 * delta(close, 1)))) 
    """
    tempd1 = u.delta(df.close, 1)
    tempmin = u.ts_min(tempd1, 5)
    tempmax = u.ts_max(tempd1, 5)
    return pd.Series(
        np.where(tempmin > 0, tempd1,
                 np.where(tempmax < 0, tempd1, (-1 * tempd1))), df.index)
Пример #9
0
def alpha24(df):
    """
    Alpha#24
    Can be shortened without the || (or operator) and just use the <= statement.
    ((((delta((sum(close, 100) / 100), 100) / delay(close, 100)) < 0.05) ||
    ((delta((sum(close, 100) / 100), 100) / delay(close, 100)) == 0.05)) ? 
    (-1 * (close - ts_min(close, 100))) : (-1 * delta(close, 3))) 
    """
    decision = u.delta(
        (u.ts_sum(df.close, 100) / 100), 100) / u.delay(df.close, 100) <= 0.05
    if_true = (-1 * (df.close - u.ts_min(df.close, 100)))
    if_false = (-1 * u.delta(df.close, 3))
    return pd.Series(np.where(decision, if_true, if_false), df.index)
Пример #10
0
def alpha10(df):
    """
    Alpha#10
    rank(((0 < ts_min(delta(close, 1), 4)) ? delta(close, 1) : ((ts_max(delta(close, 1), 4) < 0)
    ? delta(close, 1) : (-1 * delta(close, 1)))))
    """
    tempd1 = u.delta(df.close, 1)
    tempmin = u.ts_min(tempd1, 4)
    tempmax = u.ts_max(tempd1, 4)
    return u.rank(
        pd.Series(
            np.where(tempmin > 0, tempd1,
                     np.where(tempmax < 0, tempd1, (-1 * tempd1))), df.index))
Пример #11
0
def alpha29(df):
    """
    Alpha#29
    (min(product(rank(rank(scale(log(sum(ts_min(rank(rank((-1 * rank(delta((close - 1),
    5))))), 2), 1))))), 1), 5) + ts_rank(delay((-1 * returns), 6), 5)) 
    """
    temp1 = u.scale(
        np.log(
            u.ts_sum(
                u.ts_min(
                    u.rank(u.rank((-1 * u.rank(u.delta((df.close - 1), 5))))),
                    2), 1)))
    temp2 = u.product(u.rank(u.rank(temp1)), 1)
    temp3 = u.ts_rank(u.delay((-1 * df.returns), 6), 5)
    return (np.where(temp1 < temp2, temp1, temp2) + temp3)