# Check path existence if not os.path.exists(full_x_valid_path): os.makedirs(full_x_valid_path) if not os.path.exists(model_path): os.makedirs(model_path) ########################################################## # 2. Construct normal series and abnormal series ########################################################## normal_series_list = [] print('Start constructing normal series....') for filename in sorted(glob.glob(normal_output_path + '*.txt')): print(filename) series = utils.txt_to_series(filename) print(series.shape) normal_series_list.append(series) ########################################################## # 3. Load and Process Data ########################################################## print('Start loading and processing data...') # Initiate data temp = normal_series_list[0].copy() split_time = int(temp.shape[0] * 0.8) temp_x_train = temp[:split_time] temp_x_valid = temp[split_time:] full_x_valid = temp_x_valid.copy() # Initiate training and valid set
# Check path existence if not os.path.exists(full_x_valid_path): os.makedirs(full_x_valid_path) if not os.path.exists(model_path): os.makedirs(model_path) ########################################################## # 2. Construct normal series and abnormal series ########################################################## normal_series_list = [] print('Start constructing normal series....') for filename in sorted(glob.glob(normal_output_path + '*.txt')): print(filename) series = utils.txt_to_series(filename)[:, 87:123] print(series.shape) normal_series_list.append(series) ########################################################## # 3. Load and Process Data ########################################################## print('Start loading and processing data...') # Initiate data temp = normal_series_list[0].copy() split_time = int(temp.shape[0] * 0.8) temp_x_train = temp[:split_time] temp_x_valid = temp[split_time:] full_x_valid = temp_x_valid.copy() # Initiate training and valid set