def __init__(self, network, w_lr=0.01, w_mom=0.9, w_wd=1e-4, t_lr=0.001, t_wd=3e-3, t_beta=(0.5, 0.999), init_temperature=5.0, temperature_decay=0.965, logger=logging, lr_scheduler={'T_max': 200}, gpus=[0], save_theta_prefix='', theta_result_path='./theta-result', checkpoints_path='./checkpoints'): assert isinstance(network, FBNet) network.apply(weights_init) network = network.train().cuda() if isinstance(gpus, str): gpus = [int(i) for i in gpus.strip().split(',')] network = DataParallel(network, gpus) self.gpus = gpus self._mod = network theta_params = network.theta mod_params = network.parameters() self.theta = theta_params self.w = mod_params self._tem_decay = temperature_decay self.temp = init_temperature self.logger = logger self.save_theta_prefix = save_theta_prefix if not os.path.exists(theta_result_path): os.makedirs(theta_result_path) self.theta_result_path = theta_result_path if not os.path.exists(checkpoints_path): os.makedirs(checkpoints_path) self.checkpoints_path = checkpoints_path self._acc_avg = AvgrageMeter('acc') self._ce_avg = AvgrageMeter('ce') self._lat_avg = AvgrageMeter('lat') self._loss_avg = AvgrageMeter('loss') self.w_opt = torch.optim.SGD(mod_params, w_lr, momentum=w_mom, weight_decay=w_wd) self.w_sche = CosineDecayLR(self.w_opt, **lr_scheduler) self.t_opt = torch.optim.Adam(theta_params, lr=t_lr, betas=t_beta, weight_decay=t_wd)
def __init__(self, network, w_lr=0.01, w_mom=0.9, w_wd=1e-4, t_lr=0.001, t_wd=3e-3, t_beta=(0.5, 0.999), init_temperature=5.0, temperature_decay=0.965, logger=logging, lr_scheduler={'T_max': 200}, gpus=[0], save_theta_prefix='', save_tb_log=''): assert isinstance(network, FBNet) network.apply(weights_init) network = network.train().cuda() if isinstance(gpus, str): gpus = [int(i) for i in gpus.strip().split(',')] # network = DataParallel(network, gpus) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") network.to(device) self.gpus = gpus self._mod = network theta_params = network.theta mod_params = network.parameters() self.theta = theta_params self.w = mod_params self._tem_decay = temperature_decay self.temp = init_temperature self.logger = logger self.tensorboard = Tensorboard('logs/' + save_tb_log) self.save_theta_prefix = save_theta_prefix self._acc_avg = AvgrageMeter('acc') self._ce_avg = AvgrageMeter('ce') self._lat_avg = AvgrageMeter('lat') self._loss_avg = AvgrageMeter('loss') self._ener_avg = AvgrageMeter('ener') self.w_opt = torch.optim.SGD(mod_params, w_lr, momentum=w_mom, weight_decay=w_wd) self.w_sche = CosineDecayLR(self.w_opt, **lr_scheduler) self.t_opt = torch.optim.Adam(theta_params, lr=t_lr, betas=t_beta, weight_decay=t_wd)
def __init__(self, network, w_lr=0.01, w_mom=0.9, w_wd=1e-4, t_lr=0.001, t_wd=3e-3, t_beta=(0.5, 0.999), init_temperature=5.0, temperature_decay=0.965, logger=logging, lr_scheduler={'T_max' : 200}, gpus=[0], save_theta_prefix='', resource_weight=0.001): assert isinstance(network, SNAS) network.apply(weights_init) network = network.train().cuda() self._criterion = nn.CrossEntropyLoss().cuda() alpha_params = network.arch_parameters() mod_params = network.model_parameters() self.alpha = alpha_params if isinstance(gpus, str): gpus = [int(i) for i in gpus.strip().split(',')] network = DataParallel(network, gpus) self._mod = network self.gpus = gpus self.w = mod_params self._tem_decay = temperature_decay self.temp = init_temperature self.logger = logger self.save_theta_prefix = save_theta_prefix self._resource_weight = resource_weight self._loss_avg = AvgrageMeter('loss') self._acc_avg = AvgrageMeter('acc') self._res_cons_avg = AvgrageMeter('resource-constraint') self.w_opt = torch.optim.SGD( mod_params, w_lr, momentum=w_mom, weight_decay=w_wd) self.w_sche = CosineDecayLR(self.w_opt, **lr_scheduler) self.t_opt = torch.optim.Adam( alpha_params, lr=t_lr, betas=t_beta, weight_decay=t_wd)
class Trainer(object): """Training network parameters and theta separately. """ def __init__(self, network, w_lr=0.01, w_mom=0.9, w_wd=1e-4, t_lr=0.001, t_wd=3e-3, t_beta=(0.5, 0.999), init_temperature=5.0, temperature_decay=0.965, logger=logging, lr_scheduler={'T_max': 200}, gpus=[0], save_theta_prefix=''): assert isinstance(network, FBNet) network.apply(weights_init) network = network.train().cuda() if isinstance(gpus, str): gpus = [int(i) for i in gpus.strip().split(',')] network = DataParallel(network, gpus) self.gpus = gpus self._mod = network theta_params = network.theta mod_params = network.parameters() self.theta = theta_params self.w = mod_params self._tem_decay = temperature_decay self.temp = init_temperature self.logger = logger self.save_theta_prefix = save_theta_prefix self._acc_avg = AvgrageMeter('acc') self._ce_avg = AvgrageMeter('ce') self._lat_avg = AvgrageMeter('lat') self._loss_avg = AvgrageMeter('loss') self.w_opt = torch.optim.SGD(mod_params, w_lr, momentum=w_mom, weight_decay=w_wd) self.w_sche = CosineDecayLR(self.w_opt, **lr_scheduler) self.t_opt = torch.optim.Adam(theta_params, lr=t_lr, betas=t_beta, weight_decay=t_wd) def train_w(self, input, target, decay_temperature=False): """Update model parameters. """ self.w_opt.zero_grad() loss, ce, lat, acc, energy = self._mod(input, target, self.temp) loss.backward() self.w_opt.step() if decay_temperature: tmp = self.temp self.temp *= self._tem_decay self.logger.info("Change temperature from %.5f to %.5f" % (tmp, self.temp)) return loss.item(), ce.item(), lat.item(), acc.item(), energy.item() def train_t(self, input, target, decay_temperature=False): """Update theta. """ self.t_opt.zero_grad() loss, ce, lat, acc, energy = self._mod(input, target, self.temp) loss.backward() self.t_opt.step() if decay_temperature: tmp = self.temp self.temp *= self._tem_decay self.logger.info("Change temperature from %.5f to %.5f" % (tmp, self.temp)) return loss.item(), ce.item(), lat.item(), acc.item(), energy.item() def decay_temperature(self, decay_ratio=None): tmp = self.temp if decay_ratio is None: self.temp *= self._tem_decay else: self.temp *= decay_ratio self.logger.info("Change temperature from %.5f to %.5f" % (tmp, self.temp)) def _step(self, input, target, epoch, step, log_frequence, func): """Perform one step of training. """ input = input.cuda() target = target.cuda() loss, ce, lat, acc, energy = func(input, target) # Get status batch_size = self._mod.batch_size self._acc_avg.update(acc) self._ce_avg.update(ce) self._lat_avg.update(lat) self._loss_avg.update(loss) if step > 1 and (step % log_frequence == 0): self.toc = time.time() speed = 1.0 * (batch_size * log_frequence) / (self.toc - self.tic) self.logger.info( "Epoch[%d] Batch[%d] Speed: %.6f samples/sec %s %s %s %s" % (epoch, step, speed, self._loss_avg, self._acc_avg, self._ce_avg, self._lat_avg)) map(lambda avg: avg.reset(), [self._loss_avg, self._acc_avg, self._ce_avg, self._lat_avg]) self.tic = time.time() def search(self, train_w_ds, train_t_ds, total_epoch=90, start_w_epoch=10, log_frequence=100): """Search model. """ assert start_w_epoch >= 1, "Start to train w" self.tic = time.time() for epoch in range(start_w_epoch): self.logger.info("Start to train w for epoch %d" % epoch) for step, (input, target) in enumerate(train_w_ds): self._step(input, target, epoch, step, log_frequence, lambda x, y: self.train_w(x, y, False)) self.w_sche.step() # print(self.w_sche.last_epoch, self.w_opt.param_groups[0]['lr']) self.tic = time.time() for epoch in range(total_epoch): self.logger.info("Start to train theta for epoch %d" % (epoch + start_w_epoch)) for step, (input, target) in enumerate(train_t_ds): self._step(input, target, epoch + start_w_epoch, step, log_frequence, lambda x, y: self.train_t(x, y, False)) self.save_theta( './theta-result/%s_theta_epoch_%d.txt' % (self.save_theta_prefix, epoch + start_w_epoch)) self.decay_temperature() self.logger.info("Start to train w for epoch %d" % (epoch + start_w_epoch)) for step, (input, target) in enumerate(train_w_ds): self._step(input, target, epoch + start_w_epoch, step, log_frequence, lambda x, y: self.train_w(x, y, False)) self.w_sche.step() def save_theta(self, save_path='theta.txt'): """Save theta. """ res = [] with open(save_path, 'w') as f: for t in self.theta: t_list = list(t.detach().cpu().numpy()) res.append(t_list) s = ' '.join([str(tmp) for tmp in t_list]) f.write(s + '\n') return res
def train(cfg): # Initialize init_seeds() image_size_min = 6.6 # 320 / 32 / 1.5 image_size_max = 28.5 # 320 / 32 / 28.5 if cfg.TRAIN.MULTI_SCALE: image_size_min = round(cfg.TRAIN.IMAGE_SIZE / 32 / 1.5) image_size_max = round(cfg.TRAIN.IMAGE_SIZE / 32 * 1.5) image_size = image_size_max * 32 # initiate with maximum multi_scale size print(f"Using multi-scale {image_size_min * 32} - {image_size}") # Remove previous results for files in glob.glob("results.txt"): os.remove(files) # Initialize model model = YOLOv3(cfg).to(device) # Optimizer optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.LR, momentum=cfg.TRAIN.MOMENTUM, weight_decay=cfg.TRAIN.DECAY, nesterov=True) # Define the loss function calculation formula of the model compute_loss = YoloV3Loss(cfg) epoch = 0 start_epoch = 0 best_maps = 0.0 context = None # Dataset # Apply augmentation hyperparameters train_dataset = VocDataset(anno_file_type=cfg.TRAIN.DATASET, image_size=cfg.TRAIN.IMAGE_SIZE, cfg=cfg) # Dataloader train_dataloader = DataLoader(train_dataset, batch_size=cfg.TRAIN.MINI_BATCH_SIZE, num_workers=cfg.TRAIN.WORKERS, shuffle=cfg.TRAIN.SHUFFLE, pin_memory=cfg.TRAIN.PIN_MENORY) if cfg.TRAIN.WEIGHTS.endswith(".pth"): state = torch.load(cfg.TRAIN.WEIGHTS, map_location=device) # load model try: state["state_dict"] = { k: v for k, v in state["state_dict"].items() if model.state_dict()[k].numel() == v.numel() } model.load_state_dict(state["state_dict"], strict=False) except KeyError as e: error_msg = f"{cfg.TRAIN.WEIGHTS} is not compatible with {cfg.CONFIG_FILE}. " error_msg += f"Specify --weights `` or specify a --config-file " error_msg += f"compatible with {cfg.TRAIN.WEIGHTS}. " raise KeyError(error_msg) from e # load optimizer if state["optimizer"] is not None: optimizer.load_state_dict(state["optimizer"]) best_maps = state["best_maps"] # load results if state.get("training_results") is not None: with open("results.txt", "w") as file: file.write(state["training_results"]) # write results.txt start_epoch = state["batches"] + 1 // len(train_dataloader) del state elif len(cfg.TRAIN.WEIGHTS) > 0: # possible weights are "*.weights", "yolov3-tiny.conv.15", "darknet53.conv.74" etc. load_darknet_weights(model, cfg.TRAIN.WEIGHTS) else: print("Pre training model weight not loaded.") # Mixed precision training https://github.com/NVIDIA/apex if mixed_precision: # skip print amp info model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0) # source https://arxiv.org/pdf/1812.01187.pdf scheduler = CosineDecayLR(optimizer, max_batches=cfg.TRAIN.MAX_BATCHES, lr=cfg.TRAIN.LR, warmup=cfg.TRAIN.WARMUP_BATCHES) # Initialize distributed training if device.type != "cpu" and torch.cuda.device_count( ) > 1 and torch.distributed.is_available(): dist.init_process_group( backend="nccl", # "distributed backend" # distributed training init method init_method="tcp://127.0.0.1:9999", # number of nodes for distributed training world_size=1, # distributed training node rank rank=0) model = torch.nn.parallel.DistributedDataParallel(model) model.backbone = model.module.backbone # Model EMA # TODO: ema = ModelEMA(model, decay=0.9998) # Start training batches_num = len(train_dataloader) # number of batches # 'loss_GIOU', 'loss_Confidence', 'loss_Classification' 'loss' results = (0, 0, 0, 0) epochs = cfg.TRAIN.MAX_BATCHES // len(train_dataloader) print(f"Using {cfg.TRAIN.WORKERS} dataloader workers.") print( f"Starting training {cfg.TRAIN.MAX_BATCHES} batches for {epochs} epochs..." ) start_time = time.time() for epoch in range(start_epoch, epochs): model.train() # init batches batches = 0 mean_losses = torch.zeros(4) print("\n") print( ("%10s" * 7) % ("Batch", "memory", "GIoU", "conf", "cls", "total", " image_size")) progress_bar = tqdm(enumerate(train_dataloader), total=batches_num) for index, (images, small_label_bbox, medium_label_bbox, large_label_bbox, small_bbox, medium_bbox, large_bbox) in progress_bar: # number integrated batches (since train start) batches = index + len(train_dataloader) * epoch scheduler.step(batches) images = images.to(device) small_label_bbox = small_label_bbox.to(device) medium_label_bbox = medium_label_bbox.to(device) large_label_bbox = large_label_bbox.to(device) small_bbox = small_bbox.to(device) medium_bbox = medium_bbox.to(device) large_bbox = large_bbox.to(device) # Hyper parameter Burn-in if batches <= cfg.TRAIN.WARMUP_BATCHES: for m in model.named_modules(): if m[0].endswith('BatchNorm2d'): m[1].track_running_stats = batches == cfg.TRAIN.WARMUP_BATCHES # Run model pred, raw = model(images) # Compute loss loss, loss_giou, loss_conf, loss_cls = compute_loss( pred, raw, small_label_bbox, medium_label_bbox, large_label_bbox, small_bbox, medium_bbox, large_bbox) # Compute gradient if mixed_precision: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # Optimize accumulated gradient if batches % cfg.TRAIN.BATCH_SIZE // cfg.TRAIN.MINI_BATCH_SIZE == 0: optimizer.step() optimizer.zero_grad() # TODO: ema.update(model) # Print batch results # update mean losses loss_items = torch.tensor([loss_giou, loss_conf, loss_cls, loss]) mean_losses = (mean_losses * index + loss_items) / (index + 1) memory = f"{torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0:.2f}G" context = ("%10s" * 2 + "%10.3g" * 5) % ( "%g/%g" % (batches + 1, cfg.TRAIN.MAX_BATCHES), memory, *mean_losses, train_dataset.image_size) progress_bar.set_description(context) # Multi-Scale training if cfg.TRAIN.MULTI_SCALE: # adjust img_size (67% - 150%) every 10 batch size if batches % cfg.TRAIN.RESIZE_INTERVAL == 0: train_dataset.image_size = random.randrange( image_size_min, image_size_max + 1) * 32 # Write Tensorboard results if tb_writer: # 'loss_GIOU', 'loss_Confidence', 'loss_Classification' 'loss' titles = ["GIoU", "Confidence", "Classification", "Train loss"] for xi, title in zip( list(mean_losses) + list(results), titles): tb_writer.add_scalar(title, xi, index) # Process epoch results # TODO: ema.update_attr(model) final_epoch = epoch + 1 == epochs # Calculate mAP # skip first epoch maps = 0. if epoch > 0: maps = evaluate(cfg, args) # Write epoch results with open("results.txt", "a") as f: # 'loss_GIOU', 'loss_Confidence', 'loss_Classification' 'loss', 'maps' f.write(context + "%10.3g" * 1 % maps) f.write("\n") # Update best mAP if maps > best_maps: best_maps = maps # Save training results with open("results.txt", 'r') as f: # Create checkpoint state = { 'batches': batches, 'best_maps': maps, 'training_results': f.read(), 'state_dict': model.state_dict(), 'optimizer': None if final_epoch else optimizer.state_dict() } # Save last checkpoint torch.save(state, "weights/checkpoint.pth") # Save best checkpoint if best_maps == maps: state = { 'batches': -1, 'best_maps': None, 'training_results': None, 'state_dict': model.state_dict(), 'optimizer': None } torch.save(state, "weights/model_best.pth") # Delete checkpoint del state print(f"{epoch - start_epoch} epochs completed " f"in {(time.time() - start_time) / 3600:.3f} hours.\n") dist.destroy_process_group() if torch.cuda.device_count() > 1 else None torch.cuda.empty_cache()
class Trainer(object): """Training network parameters and alpha. """ def __init__(self, network, w_lr=0.01, w_mom=0.9, w_wd=1e-4, t_lr=0.001, t_wd=3e-3, t_beta=(0.5, 0.999), init_temperature=5.0, temperature_decay=0.965, logger=logging, lr_scheduler={'T_max' : 200}, gpus=[0], save_theta_prefix='', resource_weight=0.001): assert isinstance(network, SNAS) network.apply(weights_init) network = network.train().cuda() self._criterion = nn.CrossEntropyLoss().cuda() alpha_params = network.arch_parameters() mod_params = network.model_parameters() self.alpha = alpha_params if isinstance(gpus, str): gpus = [int(i) for i in gpus.strip().split(',')] network = DataParallel(network, gpus) self._mod = network self.gpus = gpus self.w = mod_params self._tem_decay = temperature_decay self.temp = init_temperature self.logger = logger self.save_theta_prefix = save_theta_prefix self._resource_weight = resource_weight self._loss_avg = AvgrageMeter('loss') self._acc_avg = AvgrageMeter('acc') self._res_cons_avg = AvgrageMeter('resource-constraint') self.w_opt = torch.optim.SGD( mod_params, w_lr, momentum=w_mom, weight_decay=w_wd) self.w_sche = CosineDecayLR(self.w_opt, **lr_scheduler) self.t_opt = torch.optim.Adam( alpha_params, lr=t_lr, betas=t_beta, weight_decay=t_wd) def _acc(self, logits, target): batch_size = target.size()[0] pred = torch.argmax(logits, dim=1) acc = torch.sum(pred == target).float() / batch_size return acc def train(self, input, target): """Update parameters. """ self.w_opt.zero_grad() logits, costs = self._mod(input, self.temp) acc = self._acc(logits, target) costs = costs.mean() costs *= self._resource_weight loss = self._criterion(logits, target) + costs loss.backward() self.w_opt.step() self.t_opt.step() return loss, costs, acc def decay_temperature(self, decay_ratio=None): tmp = self.temp if decay_ratio is None: self.temp *= self._tem_decay else: self.temp *= decay_ratio self.logger.info("Change temperature from %.5f to %.5f" % (tmp, self.temp)) def _step(self, input, target, epoch, step, log_frequence, func): """Perform one step of training. """ input = input.cuda() target = target.cuda() loss, res_cost, acc = func(input, target) # Get status batch_size = input.size()[0] self._loss_avg.update(loss) self._res_cons_avg.update(res_cost) self._acc_avg.update(acc) if step > 1 and (step % log_frequence == 0): self.toc = time.time() speed = 1.0 * (batch_size * log_frequence) / (self.toc - self.tic) self.logger.info("Epoch[%d] Batch[%d] Speed: %.6f samples/sec %s %s %s" % (epoch, step, speed, self._loss_avg, self._acc_avg, self._res_cons_avg)) map(lambda avg: avg.reset(), [self._loss_avg, self._res_cons_avg, self._acc_avg]) self.tic = time.time() def search(self, train_ds, epochs=90, log_frequence=100): """Search model. """ self.tic = time.time() for epoch in range(epochs): self.logger.info("Start to train for epoch %d" % (epoch)) for step, (input, target) in enumerate(train_ds): self._step(input, target, epoch, step, log_frequence, lambda x, y: self.train(x, y)) self.save_alpha('./alpha-result/%s_theta_epoch_%d.txt' % (self.save_theta_prefix, epoch)) self.decay_temperature() self.w_sche.step() def save_alpha(self, save_path='alpha.txt'): """Save alpha. """ res = [] with open(save_path, 'w') as f: for i, t in enumerate(self.alpha): n = 'normal' if i == 0 else 'reduce' assert i <= 1 tmp = t.size(0) f.write(n + ':' + '\n') for j in range(tmp): t_list = list(t[j].detach().cpu().numpy()) res.append(t_list) s = ' '.join([str(tmp) for tmp in t_list]) f.write(s + '\n') return res
class Trainer(object): """Training network parameters and theta separately. """ def __init__(self, network, w_lr=0.01, w_mom=0.9, w_wd=1e-4, t_lr=0.001, t_wd=3e-3, t_beta=(0.5, 0.999), init_temperature=5.0, temperature_decay=0.965, logger=logging, lr_scheduler={'T_max': 200}, gpus=[0], save_theta_prefix='', save_tb_log=''): assert isinstance(network, FBNet) network.apply(weights_init) network = network.train().cuda() if isinstance(gpus, str): gpus = [int(i) for i in gpus.strip().split(',')] # network = DataParallel(network, gpus) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") network.to(device) self.gpus = gpus self._mod = network theta_params = network.theta mod_params = network.parameters() self.theta = theta_params self.w = mod_params self._tem_decay = temperature_decay self.temp = init_temperature self.logger = logger self.tensorboard = Tensorboard('logs/' + save_tb_log) self.save_theta_prefix = save_theta_prefix self._acc_avg = AvgrageMeter('acc') self._ce_avg = AvgrageMeter('ce') self._lat_avg = AvgrageMeter('lat') self._loss_avg = AvgrageMeter('loss') self._ener_avg = AvgrageMeter('ener') self.w_opt = torch.optim.SGD(mod_params, w_lr, momentum=w_mom, weight_decay=w_wd) self.w_sche = CosineDecayLR(self.w_opt, **lr_scheduler) self.t_opt = torch.optim.Adam(theta_params, lr=t_lr, betas=t_beta, weight_decay=t_wd) def train_w(self, input, target, decay_temperature=False): """Update model parameters. """ self.w_opt.zero_grad() loss, ce, lat, acc, ener = self._mod(input, target, self.temp) loss.backward() self.w_opt.step() if decay_temperature: tmp = self.temp self.temp *= self._tem_decay self.logger.info("Change temperature from %.5f to %.5f" % (tmp, self.temp)) return loss.item(), ce.item(), lat.item(), acc.item(), ener.item() def train_t(self, input, target, decay_temperature=False): """Update theta. """ self.t_opt.zero_grad() loss, ce, lat, acc, ener = self._mod(input, target, self.temp) loss.backward() self.t_opt.step() if decay_temperature: tmp = self.temp self.temp *= self._tem_decay self.logger.info("Change temperature from %.5f to %.5f" % (tmp, self.temp)) return loss.item(), ce.item(), lat.item(), acc.item(), ener.item() def decay_temperature(self, decay_ratio=None): tmp = self.temp if decay_ratio is None: self.temp *= self._tem_decay else: self.temp *= decay_ratio self.logger.info("Change temperature from %.5f to %.5f" % (tmp, self.temp)) def _step(self, input, target, epoch, step, log_frequence, func): """Perform one step of training. """ input = input.cuda() target = target.cuda() loss, ce, lat, acc, ener = func(input, target) # Get status batch_size = self._mod.batch_size self._acc_avg.update(acc) self._ce_avg.update(ce) self._lat_avg.update(lat) self._loss_avg.update(loss) self._ener_avg.update(ener) if step > 1 and (step % log_frequence == 0): self.toc = time.time() speed = 1.0 * (batch_size * log_frequence) / (self.toc - self.tic) self.tensorboard.log_scalar('Total Loss', self._loss_avg.getValue(), step) self.tensorboard.log_scalar('Accuracy', self._acc_avg.getValue(), step) self.tensorboard.log_scalar('Latency', self._lat_avg.getValue(), step) self.tensorboard.log_scalar('Energy', self._ener_avg.getValue(), step) self.logger.info( "Epoch[%d] Batch[%d] Speed: %.6f samples/sec %s %s %s %s %s" % (epoch, step, speed, self._loss_avg, self._acc_avg, self._ce_avg, self._lat_avg, self._ener_avg)) map(lambda avg: avg.reset(), [ self._loss_avg, self._acc_avg, self._ce_avg, self._lat_avg, self._ener_avg ]) self.tic = time.time() def search(self, train_w_ds, train_t_ds, total_epoch=90, start_w_epoch=10, log_frequence=100): """Search model. """ assert start_w_epoch >= 1, "Start to train w" self.tic = time.time() for epoch in range(start_w_epoch): self.logger.info("Start to train w for epoch %d" % epoch) for step, (input, target) in enumerate(train_w_ds): self._step(input, target, epoch, step, log_frequence, lambda x, y: self.train_w(x, y, False)) self.w_sche.step() self.tensorboard.log_scalar('Learning rate curve', self.w_sche.last_epoch, self.w_opt.param_groups[0]['lr']) #print(self.w_sche.last_epoch, self.w_opt.param_groups[0]['lr']) self.tic = time.time() for epoch in range(total_epoch): self.logger.info("Start to train theta for epoch %d" % (epoch + start_w_epoch)) for step, (input, target) in enumerate(train_t_ds): self._step(input, target, epoch + start_w_epoch, step, log_frequence, lambda x, y: self.train_t(x, y, False)) self.save_theta( './theta-result/%s_theta_epoch_%d.txt' % (self.save_theta_prefix, epoch + start_w_epoch), epoch) self.decay_temperature() self.logger.info("Start to train w for epoch %d" % (epoch + start_w_epoch)) for step, (input, target) in enumerate(train_w_ds): self._step(input, target, epoch + start_w_epoch, step, log_frequence, lambda x, y: self.train_w(x, y, False)) self.w_sche.step() self.tensorboard.close() def save_theta(self, save_path='theta.txt', epoch=0): """Save theta. """ res = [] directory = os.path.dirname(save_path) if not os.path.exists(directory): os.makedirs(directory) with open(save_path, 'w') as f: for i, t in enumerate(self.theta): t_list = list(t.detach().cpu().numpy()) if (len(t_list) < 9): t_list.append(0.00) max_index = t_list.index(max(t_list)) self.tensorboard.log_scalar('Layer %s' % str(i), max_index + 1, epoch) res.append(t_list) s = ' '.join([str(tmp) for tmp in t_list]) f.write(s + '\n') val = np.array(res) ax = sns.heatmap(val, cbar=True, annot=True) ax.figure.savefig(save_path[:-3] + 'png') #self.tensorboard.log_image('Theta Values',val,epoch) plt.close() return res