Пример #1
0
    def parse(self):
        for line in sys.stdin:
            task_info = line.split()
            if task_info[0] == "NODE_COUNT":
                self.no_nodes = int(task_info[1])
                continue

            if task_info[0] != "NODE":
                continue
            task_type = TaskType.parse_type(task_info[3])

            memory = flops = 0
            if task_type == TaskType.COMPUTATION:
                flops=int(task_info[4])
            elif task_type == TaskType.TRANSFER:
                memory=int(task_info[4])

            t = Task(task_id=int(task_info[1]),
                    task_type=task_type,
                    memory=memory, flops=flops)
            children = task_info[2].split(',')
            if task_type == TaskType.END:
                children = []

            children = [int(child) for child in children]
            if task_type == TaskType.ROOT:
                self.dag = DAG()
                self.dag.task = t
                self.dag.kids_indices = children
            else:
                self.dag.insert(t, children, None)
Пример #2
0
class Parser:
    """
    @brief : parses input task graph with the following stucture
    NODE <index> <children list> <node type> <node cost> <parallelization overhead>
    <node type> : ROOT, COMPUTATION, TRANSFER, END

    @return : DAG
    """

    def __init__(self):
        self.no_nodes = 0
        self.dag = None

    def parse(self):
        for line in sys.stdin:
            task_info = line.split()
            if task_info[0] == "NODE_COUNT":
                self.no_nodes = int(task_info[1])
                continue

            if task_info[0] != "NODE":
                continue
            task_type = TaskType.parse_type(task_info[3])

            memory = flops = 0
            if task_type == TaskType.COMPUTATION:
                flops=int(task_info[4])
            elif task_type == TaskType.TRANSFER:
                memory=int(task_info[4])

            t = Task(task_id=int(task_info[1]),
                    task_type=task_type,
                    memory=memory, flops=flops)
            children = task_info[2].split(',')
            if task_type == TaskType.END:
                children = []

            children = [int(child) for child in children]
            if task_type == TaskType.ROOT:
                self.dag = DAG()
                self.dag.task = t
                self.dag.kids_indices = children
            else:
                self.dag.insert(t, children, None)
Пример #3
0
    def genInit_PI_S(self):
        self.dag = DAG(self.operation_count)  # directed acyclic graph
        sort_TPA = self.adjust_Topological_Prior_Assignment(
        )  #  topological sort
        sort_RPA = self.adjust_Random_Prior_Assignment(
        )  # random priority assignment (RPA)

        op_priority_dict = {
            opId: {
                'TPA': p,
                'RPA': sort_RPA.pop()
            }
            for p, opId in enumerate(sort_TPA)
        }
        sorted_op_priority_dict = sorted(op_priority_dict.items(),
                                         key=lambda x:
                                         (x[1]['TPA'], x[1]['RPA']))
        pi_s = [i[0] for i in sorted_op_priority_dict]

        return pi_s
Пример #4
0
class tabuSearch:
    def __init__(self,
                 idx_layout=1,
                 idx_job=1,
                 num_AGV=2,
                 ro=5,
                 N_iter_fac=200):
        self.idx_layout = idx_layout
        self.idx_job = idx_job
        self.machine_alloc, self.processing_time, self.layout, self.num_AGV = getBenchmarkInstance(
            idx_layout, idx_job,
            num_AGV)  # import instance of JSSPMH (Ulusoy 1995)
        self.jobNum = len(self.machine_alloc)
        self.machNum = len(self.layout) - 1
        self.operation_count = len(np.concatenate(self.machine_alloc, axis=0))
        self.operation_id_matrix = self.genOperation_id_Matrix()
        self.K = self.operation_count  # Tabu list size
        self.ro = ro  # penalty factor
        self.Niter = N_iter_fac * self.operation_count  # maximum number of iterations
        self.tabu_list = tabuList(self.K)  # tabu list

    # return operation id 2darray
    # operation id is (i,j): job i's jth operation.
    def genOperation_id_Matrix(self):
        operation_id_matrix = []
        for job in range(self.jobNum):
            job_list = []
            for op in range(len(self.machine_alloc[job])):
                job_list.append((job, op))
            operation_id_matrix.append(job_list)
        return operation_id_matrix

    # generate initial feasible pi(solution)
    def genInit_PI(self):
        pi_s = self.genInit_PI_S()
        pi_v = self.genInit_PI_V(pi_s)
        pi_init = [pi_s, pi_v]

        return pi_init

    # generate initial feasible operation pi
    # To create a feasible pi_s, topological sort and random priority assignment (RPA) methods are adopted
    def genInit_PI_S(self):
        self.dag = DAG(self.operation_count)  # directed acyclic graph
        sort_TPA = self.adjust_Topological_Prior_Assignment(
        )  #  topological sort
        sort_RPA = self.adjust_Random_Prior_Assignment(
        )  # random priority assignment (RPA)

        op_priority_dict = {
            opId: {
                'TPA': p,
                'RPA': sort_RPA.pop()
            }
            for p, opId in enumerate(sort_TPA)
        }
        sorted_op_priority_dict = sorted(op_priority_dict.items(),
                                         key=lambda x:
                                         (x[1]['TPA'], x[1]['RPA']))
        pi_s = [i[0] for i in sorted_op_priority_dict]

        return pi_s

    # generate initial feasible agv pi
    # AGV assignment conforms to the nearest vehicle rule.
    def genInit_PI_V(self, pi_s):
        pi_v = []
        agv_loc_dict = {i: 0 for i in range(self.num_AGV)}
        for i in range(self.num_AGV):
            pi_v.append(i)
            agv_loc_dict[i] = self.machine_alloc[pi_s[i][0]][pi_s[i][1]]

        for idx, op in enumerate(pi_s[2:]):
            last_op = True if op[1] == len(
                self.machine_alloc[op[0]]) - 1 else False
            if last_op:
                pi_v.append(-1)
            else:
                mach = self.machine_alloc[op[0]][op[1]]
                agv_distance_list = {}
                for agv_id, agv_loc in agv_loc_dict.items():
                    dist = self.layout[agv_loc][mach]
                    agv_distance_list[agv_id] = dist

                if agv_distance_list[0] > agv_distance_list[1]:
                    near_agv = 1
                else:
                    near_agv = 0
                pi_v.append(near_agv)
                agv_loc_dict[near_agv] = mach

        return pi_v

    #  topological sort
    def adjust_Topological_Prior_Assignment(self):
        for each_job in self.operation_id_matrix:
            for idx, j in enumerate(each_job):
                if idx == len(each_job) - 1:
                    self.dag.graph[j] = []
                else:
                    self.dag.addEdge(j, each_job[idx + 1])

        return self.dag.topologicalSort()

    # random priority assignment (RPA)
    def adjust_Random_Prior_Assignment(self):
        priority_list = [i for i in range(self.operation_count)]
        np.random.shuffle(priority_list)
        return priority_list

    # operation sequence-fixed neighbourhood generation (OSF) -> Changing pi_v
    def generate_OSF(self, pi):
        pi_s = pi[0]
        pi_v = pi[1]
        pi_neighbors_list = []
        for idx, val in enumerate(pi_v):
            neighbor_pi_v = copy.deepcopy(pi_v)
            """
            # AGV num >= 3 Case:
            other_AGVs = [i for i in range(self.num_AGV) if i!=val]
            random_select_AGV = np.random.choice(other_AGVs)
            self.pi_v[idx] = random_select_AGV # reallocate 
            """
            if val != -1:
                if val == 0:
                    neighbor_pi_v[idx] = 1
                else:
                    neighbor_pi_v[idx] = 0

                pi_neighbors_list.append([pi_s, neighbor_pi_v])
        return pi_neighbors_list

    # vehicle assignment-fixed neighbourhood generation (VAF) -> Changing pi_s
    def generate_VAF(self, pi):
        pi_s = pi[0]
        pi_v = pi[1]
        pi_neighbors_list = []
        # insertion method
        for h, val in enumerate(pi_s):
            new_h = np.random.choice([i for i in range(len(pi_s)) if i != h])

            neighbor_pi_s = copy.deepcopy(pi_s)
            neighbor_pi_v = copy.deepcopy(pi_v)

            opId = pi_s[h]
            vId = pi_v[h]

            del neighbor_pi_s[h]
            del neighbor_pi_v[h]

            neighbor_pi_s.insert(new_h, opId)
            neighbor_pi_v.insert(new_h, vId)

            neighbor_pi_s, neighbor_pi_v = self.takeRepairMechanism(
                h, new_h, opId, neighbor_pi_s, neighbor_pi_v)
            neighbor_pi = [neighbor_pi_s, neighbor_pi_v]
            pi_neighbors_list.append(neighbor_pi)

        return pi_neighbors_list

    def takeRepairMechanism(self, h, new_h, opId, pi_s, pi_v):
        # Step 1. Among the operations which are located between the original position and
        # new position of the inserted operation i, find all operations belonging to J(i).
        same_job_op_list = [i for i in pi_s[h:new_h] if i[0] == opId[0]]
        # Step 2. Randomly find a valid position for each of those operations of J(i) (found in Step1)
        # and insert them into the new positions one by one.
        # TODO: update also pi_v
        if same_job_op_list:
            for op in same_job_op_list:
                v = pi_v[pi_s.index(op)]
                checked_pos_list = []
                while self.checkInfeasible(pi_s, op):
                    h = pi_s.index(op)
                    checked_pos_list.append(h)
                    random_pos = np.random.choice([
                        idx for idx, val in enumerate(pi_s)
                        if idx not in checked_pos_list
                    ])
                    checked_pos_list.append(random_pos)
                    del pi_s[h]
                    del pi_v[h]
                    pi_s.insert(random_pos, op)
                    pi_v.insert(random_pos, v)

        return pi_s, pi_v

    def checkInfeasible(self, pi_s, op):
        # check precedence constraint of opeartion(op) at pi_s
        job_op_top_sort_list = [
            i for i in self.dag.topologicalSort() if i[0] == op[0]
        ]
        job_op_pi_s_sort_list = [i for i in pi_s if i[0] == op[0]]
        idx_top = job_op_top_sort_list.index(op)
        #idx_pi = job_op_pi_s_sort_list.index(job_op_top_sort_list[0])
        idx_pi = job_op_pi_s_sort_list.index(op)
        job_op_pi_s_sort_filtered_list = [
            i for i in job_op_pi_s_sort_list[:idx_pi + 1] if i[1] <= op[1]
        ]
        if job_op_top_sort_list[:idx_top +
                                1] != job_op_pi_s_sort_filtered_list:
            return True
        return False

    # run the tabu search
    def solve(self):
        # step 1.
        #lmf initialize
        lmf = {v: {} for v in range(self.num_AGV)}
        for v in range(self.num_AGV):
            for job in self.operation_id_matrix:
                for op in job:
                    jobId = op[0]
                    if op[1] != len(self.machine_alloc[jobId]) - 1:
                        if op not in lmf[v].keys():
                            lmf[v][op] = 0

        # step 2. create an initial feasible solution. calculate its makespan.
        pi_init = self.genInit_PI()
        z_init = self.get_objective(pi_init)
        pi_curr = pi_init
        pi_best = pi_curr
        z_curr = z_init
        z_best = z_curr

        n_iter = 0

        # step 3: generate the neighbour solutions
        while n_iter < self.Niter:
            if n_iter % 20 == 0:
                print("iter={}".format(n_iter))
            # 3.1 generate neighbour solutions of pi_curr by OSF.
            neighbours_OSF_dict = {
                idx: {
                    'sol': sol,
                    'z': 0
                }
                for idx, sol in enumerate(self.generate_OSF(pi_curr))
            }
            # 3.1.1 calculate z_neigh of each neighbour solution.
            for idx, val in neighbours_OSF_dict.items():
                pi_neigh = val['sol']
                z_neigh = self.get_objective(pi_neigh)
                neighbours_OSF_dict[idx]['z'] = z_neigh

            # For neighbours with z_neigh > z_curr, set z_neigh = z_neigh + ro * lmf(v,i)
            for idx, val in neighbours_OSF_dict.items():
                pi_neigh = val['sol']
                z_neigh = val['z']
                if z_neigh > z_curr:
                    move_idx = [
                        idx
                        for idx, v in enumerate(zip(pi_curr[1], pi_neigh[1]))
                        if v[0] != v[1]
                    ][0]
                    v = pi_neigh[1][move_idx]  # vehicle
                    i = pi_neigh[0][move_idx]  # operation

                    z_neigh = z_neigh + self.ro * lmf[v][i]
                    val['z'] = z_neigh

            # 3.1.2 find pi_neigh*.
            pi_neigh_star = sorted(neighbours_OSF_dict.items(),
                                   key=lambda x: x[1]['z'])[0][1]['sol']
            z_neigh_star = self.get_objective(pi_neigh_star)

            move_idx = [
                idx for idx, v in enumerate(zip(pi_curr[1], pi_neigh_star[1]))
                if v[0] != v[1]
            ][0]
            v_star = pi_neigh_star[1][move_idx]
            i_star = pi_neigh_star[0][move_idx]

            # update the LMF
            lmf[v_star][i_star] = lmf[v_star][i_star] + 1

            pi_curr = pi_neigh_star
            z_curr = z_neigh_star

            if z_curr < z_best:
                pi_best = pi_curr
                z_best = z_curr

            # 3.2 generate neighbour solutions of pi_curr by VAF.
            # 3.2.1 calculate z_neighbour of each neighbour solution
            neighbours_VAF_dict = {
                idx: {
                    'sol': sol,
                    'z': 0
                }
                for idx, sol in enumerate(self.generate_VAF(pi_curr))
            }
            for idx, val in neighbours_VAF_dict.items():
                pi_neigh = val['sol']
                z_neigh = self.get_objective(pi_neigh)
                neighbours_VAF_dict[idx]['z'] = z_neigh

            # Neighbours which are not tabu solutions and tabu neighbours with
            # objective function value Zneigh < Zbest consist of the admissible neighbour set.
            neighbours_admissible_list = []
            for idx, val in neighbours_VAF_dict.items():
                pi_neigh = val['sol']
                z_neigh = val['z']

                pi_s = pi_neigh[0]
                if pi_s not in self.tabu_list:
                    neighbours_admissible_list.append([idx, pi_neigh, z_neigh])
                if pi_s in self.tabu_list and z_neigh < z_best:
                    neighbours_admissible_list.append([idx, pi_neigh, z_neigh])

            # 3.2.2 find pi_neigh_star in the admissible neighbour set.
            _, pi_neigh_star, z_neigh_star = sorted(neighbours_admissible_list,
                                                    key=lambda x: x[2])[0]
            pi_curr = pi_neigh_star
            z_curr = z_neigh_star
            if z_curr < z_best:
                pi_best = pi_curr
                z_best = z_curr

            pi_s = pi_neigh_star[0]
            self.tabu_list.append(pi_s)

            n_iter = n_iter + 1

        print("solved makespan is {}".format(z_best))
        return pi_best, z_best

    # return the objective(makespan) of schedule.
    def get_objective(self, pi):
        machine_schedule, agv_schedule = self.get_schedule(pi)
        makespan = max([i[-1][-1] for i in machine_schedule.values()])

        return makespan

    # return the schedule of each resource(Machines, AGVs)
    def get_schedule(self, pi):
        pi_s = pi[0]
        pi_v = pi[1]
        job_info = {
            i: {
                'p': p,
                'm': m,
                'pf': 9999,
                'lf': 9999
            }
            for i, p, m in zip(sorted(pi_s),
                               np.concatenate(self.processing_time, axis=0),
                               np.concatenate(self.machine_alloc, axis=0))
        }

        machine_schedule = {i: [] for i in range(1, len(self.layout))}
        agv_schedule = {i: [] for i in range(self.num_AGV)}

        # decode
        for op, agv in zip(pi_s, pi_v):
            mach = job_info[op]['m']
            first_op = True if op[1] == 0 else False
            last_op = True if agv == -1 else False

            if first_op:
                job_ready_t = 0
            else:
                job_ready_t = job_info[op[0], op[1] - 1]['lf']

            if not machine_schedule[mach]:
                mach_ready_t = 0
            else:
                mach_ready_t = machine_schedule[mach][-1][-1]

            # schedule: Process, Empty Trip, Load Trip
            process_st = max(job_ready_t, mach_ready_t)
            process_et = process_st + job_info[op]['p']
            job_info[op]['pf'] = process_et

            if not last_op:
                if not agv_schedule[agv]:  # agv location: LU stocker
                    agv_loc = mach
                    emptyTrip_st = 0
                else:
                    agv_loc = agv_schedule[agv][-1][2]
                    emptyTrip_st = agv_schedule[agv][-1][-1]
                emptyTrip_et = emptyTrip_st + self.layout[agv_loc][mach]

                # schedule load trip task
                next_mach = job_info[op[0], op[1] + 1]['m']
                move_st = max(process_et, emptyTrip_et)
                move_et = move_st + self.layout[mach][next_mach]
                job_info[op]['lf'] = move_et

                agv_schedule[agv].append([(-1, -1), agv_loc, mach,
                                          emptyTrip_st, emptyTrip_et])
                agv_schedule[agv].append(
                    [op, mach, next_mach, move_st, move_et])
            machine_schedule[mach].append([op, process_st, process_et])

        return machine_schedule, agv_schedule

    # return and save the gantt chart of schedule
    def draw_Gantt(self, z, machine_schedule, agv_schedule):
        import matplotlib.colors as mcolors
        color_dict = np.random.choice(list(mcolors.CSS4_COLORS.keys()),
                                      self.jobNum)
        job_color = {i: color_dict[i] for i in range(self.jobNum)}
        job_color[-1] = 'lightgrey'

        fig, gnt = plt.subplots(figsize=(30, 10))

        gnt.set_title(
            'gantt chart, layout={}, jobset={}, num_AGV={}, makespan={}'.
            format(self.idx_layout, self.idx_job, self.num_AGV, z))
        gnt.set_xlabel('time')
        gnt.set_ylabel('resources')

        gnt.set_xticks([i for i in range(100)])
        plt.xticks(rotation=45)
        gnt.set_yticks([25, 45, 65, 85, 105, 125])
        gnt.set_yticklabels(['agv1', 'agv2', 'm1', 'm2', 'm3', 'm4'])
        gnt.grid(True)

        for k, v in machine_schedule.items():
            gnt.broken_barh([(i[1], i[2] - i[1]) for i in v], (k * 20 + 40, 9),
                            facecolors=[job_color[i[0][0]] for i in v])

        for k, v in agv_schedule.items():
            gnt.broken_barh([(i[3], i[4] - i[3]) for i in v],
                            ((k + 1) * 20, 9),
                            facecolors=[job_color[i[0][0]] for i in v])
            for i in v:
                if i[1] == i[2]:
                    gnt.text(x=(i[3] + i[4]) / 2, y=k * 20 + 25, s='*wait')
                else:
                    gnt.text(x=(i[3] + i[4]) / 2,
                             y=k * 20 + 25,
                             s='{}->{}'.format(i[1], i[2]))

        patch_list = []
        for i in range(self.jobNum):
            patch = mpatches.Patch(color=job_color[i],
                                   label='job_' + str(i + 1))
            patch_list.append(patch)

        patch = mpatches.Patch(color=job_color[-1], label='empty trip')
        patch_list.append(patch)

        gnt.legend(handles=patch_list)
        fig.savefig('./gantt.png')

    # check wheter last operation of each job is unassigned with AGV(=-1)
    def checkLastOpFeasible(self, pi):
        pi_s = pi[0]
        pi_v = pi[1]

        last_op_set = [i[-1] for i in self.operation_id_matrix]

        for op in last_op_set:
            if pi_v[pi_s.index(op)] != -1:
                print("infeasible assn, op: {}".format(op))
        print("checked")