def init(self): # Load Communicator if self.server_address != "": try: self.communicator = Communicator() print(self.cam_address, self.cam_address) self.communicator.load_client(self.server_address, self.cam_address, self.final_result_pool) self.communicator_thread = threading.Thread(target=self.communicator.run) except: return False, PrintLog.e("Socket communicator failed to load.") # Load Object Detector try: self.object_detector = YOLOv4(self.frame_info_pool, self.object_detection_result_pool, self.final_result_pool,model=self.object_detection_model, dataset=self.object_detection_dataset, score_threshold=self.score_threshold, nms_threshold=self.nms_threshold) except: return False, PrintLog.e("Object detector failed to load.") # Load Event Detector try: self.event_manager = EventManager(self.object_detection_result_pool, self.final_result_pool) self.event_manager_thread = threading.Thread(target=self.event_manager.run) except: return False, PrintLog.e("Object detector failed to load.") # Load Decoder Manager try: self.decoder_manager = DecoderManager(self.analysis_fps, self.cam_address, self.frame_info_pool) self.decoder_thread = threading.Thread(target=self.decoder_manager.run) except: return False, PrintLog.e("Decoder manager failed to load.") PrintLog.i("Edge analysis module is successfully loaded.") return True
def extract_event_results(event_model_names, event_dir, video_name, event_detectors, event_results): event_csv_file_path = os.path.join(event_dir, video_name.split(".mp4")[0] + ".csv") with open(event_csv_file_path, "w") as event_file: csv_writer = csv.writer(event_file) if type(event_model_names) == list: event_names = event_model_names elif event_model_names == "all": event_names = [ "assault", "falldown", "kidnapping", "obstacle", "tailing", "wanderer" ] else: event_names = [event_model_names] name = [""] for i, event_detector in enumerate(event_detectors): name.append(event_detector.model_name) csv_writer.writerow(name) for event_result in event_results: row = ["{:>10}".format(event_result["frame_number"])] for i, event_name in enumerate(event_names): if event_result["event_result"][event_name]: row.append(i + 1) else: row.append("") csv_writer.writerow(row) PrintLog.i("Event result file is successfully extracted.(path: {})".format( event_csv_file_path))
def __init__(self, frame_info_pool=None, detection_result_pool=None, final_result_pool=None, model='yolov4-416', dataset='obstacle', score_threshold=0.5, nms_threshold=0.3): """ :param model: model name :param category_num: """ self.results = dict() self.model_name = model self.dataset = dataset self.frame_info_pool = frame_info_pool self.detection_result_pool = detection_result_pool self.final_result_pool = final_result_pool self.score_threshold = score_threshold self.nms_threshold = nms_threshold if dataset == "coco": category_num = 80 else : category_num = 15 self.cls_dict = get_cls_dict(category_num) yolo_dim = model.split('-')[-1] if 'x' in yolo_dim: dim_split = yolo_dim.split('x') if len(dim_split) != 2: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) w, h = int(dim_split[0]), int(dim_split[1]) else: h = w = int(yolo_dim) if h % 32 != 0 or w % 32 != 0: raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim) self.model = TrtYOLO(model, (h, w), category_num) PrintLog.i("Object detection model is loaded - {}\t{}".format(model, dataset))
def __init__(self, analysis_fps, cam_address, frame_info_pool): self.cam_address = self.address_spliter(cam_address) self.frame_info_pool = frame_info_pool self.analysis_fps = analysis_fps self.decoder = None PrintLog.i("Decoder loading is started") if len(self.cam_address) == 1: self.decoder = CvSingleDecoder(self.cam_address[0], analysis_fps) else : self.decoder = CvMultipleDecoder(self.cam_address, analysis_fps) PrintLog.i("Decoder is loaded - {}".format(cam_address))
def run_ffmpeg(video_path, extract_fps, frame_dir): try: command = "ffmpeg -y -hide_banner -loglevel panic -i {} -vsync 2 -q:v 0 -vf fps={} {}/%04d.jpg".format( video_path, extract_fps, frame_dir) os.system(command) frame_path_list = sorted(os.listdir(frame_dir)) PrintLog.i( "Frame extraction is successfully completed(path: {}, framecount: {})" .format(frame_dir, len(frame_path_list))) return frame_path_list except: PrintLog.e("Frame extraction is failed") exit(0)
def run(self): PrintLog.i("Frame Number\tTimestamp") while True: if len(self.frame_info_pool) > 0: frame_info = self.frame_info_pool.pop(0) result = self.inference_by_image(frame_info["frame"]) detection_result = dict() detection_result["cam_address"] = frame_info["cam_address"] detection_result["timestamp"] = frame_info["timestamp"] detection_result["frame_number"] = frame_info["frame_number"] detection_result["results"] = [] detection_result["results"].append( {"detection_result": result}) self.detection_result_pool.append(detection_result)
def load_video(video_path, extract_fps): capture = cv2.VideoCapture(video_path) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(round(capture.get(cv2.CAP_PROP_FPS))) PrintLog.i("Extract information\n" "\tvideo path: {}\n" "\tvideo fps: {}\n" "\tvideo framecount: {}\n" "\textract fps: {}\n" "\textract frame number: {}".format( video_path, fps, frame_count, extract_fps, int(frame_count / (fps / extract_fps)))) return capture, frame_count, fps
def __init__(self, object_detection_result_pool, final_result_pool): self.event_detectors = [] self.final_result_pool = final_result_pool self.object_detection_result_pool = object_detection_result_pool assault_detection_model = AssaultEvent() PrintLog.i("{} model is loaded".format( assault_detection_model.model_name)) wander_detection_model = WandererEvent() PrintLog.i("{} model is loaded".format( wander_detection_model.model_name)) falldown_detection_model = FalldownEvent() PrintLog.i("{} model is loaded".format( falldown_detection_model.model_name)) obstacle_model = ObstacleEvent() PrintLog.i("{} model is loaded".format(obstacle_model.model_name)) kidnapping_model = KidnappingEvent() PrintLog.i("{} model is loaded".format(kidnapping_model.model_name)) tailing_model = TailingEvent() PrintLog.i("{} model is loaded".format(tailing_model.model_name)) reid_model = ReidEvent() PrintLog.i("{} model is loaded".format(reid_model.model_name)) self.event_detectors.append(assault_detection_model) self.event_detectors.append(wander_detection_model) self.event_detectors.append(falldown_detection_model) self.event_detectors.append(obstacle_model) self.event_detectors.append(kidnapping_model) self.event_detectors.append(tailing_model) self.event_detectors.append(reid_model)
def load_models(od_model_name="yolov4-416", score_threshold=0.5, nms_threshold=0.3, event_model_names="all"): if od_model_name == "yolov4-416": od_model = YOLOv4(model=od_model_name, score_threshold=score_threshold, nms_threshold=nms_threshold) else: od_model = YOLOv4(model=od_model_name, score_threshold=score_threshold, nms_threshold=nms_threshold) PrintLog.i("YOLO detector information\n" "\tmodel name: {}\n" "\tscore threshold: {}\n" "\tnms threshold: {}".format(od_model_name, score_threshold, nms_threshold)) event_detectors = [] PrintLog.i("{} model is loaded".format("Object detection(yolov4)")) splited_model_names = split_model_names(event_model_names) if event_model_names == "all" or "assault" in splited_model_names: assault_detection_model = AssaultEvent() event_detectors.append(assault_detection_model) PrintLog.i("{} model is loaded".format( assault_detection_model.model_name)) if event_model_names == "all" or "falldown" in splited_model_names: falldown_detection_model = FalldownEvent() event_detectors.append(falldown_detection_model) PrintLog.i("{} model is loaded".format( falldown_detection_model.model_name)) if event_model_names == "all" or "obstacle" in splited_model_names: obstacle_detection_model = ObstacleEvent() event_detectors.append(obstacle_detection_model) PrintLog.i("{} model is loaded".format( obstacle_detection_model.model_name)) if event_model_names == "all" or "kidnapping" in splited_model_names: kidnapping_detection_model = KidnappingEvent() event_detectors.append(kidnapping_detection_model) PrintLog.i("{} model is loaded".format( kidnapping_detection_model.model_name)) if event_model_names == "all" or "tailing" in splited_model_names: tailing_detection_model = TailingEvent() event_detectors.append(tailing_detection_model) PrintLog.i("{} model is loaded".format( tailing_detection_model.model_name)) if event_model_names == "all" or "wanderer" in splited_model_names: wanderer_detection_model = WandererEvent() event_detectors.append(wanderer_detection_model) PrintLog.i("{} model is loaded".format( wanderer_detection_model.model_name)) return od_model, event_detectors
def run_detection(od_model, event_detectors, frame_dir, frame_path_list, fram_bbox_dir, json_dir, bbox_video_path): fourcc = cv2.VideoWriter_fourcc(*'DIVX') video_writer = cv2.VideoWriter(bbox_video_path, fourcc, 20, (640, 360)) frame_number = 0 event_results = [] cls_dict = get_cls_dict(15) bbox_visualization = BBoxVisualization(cls_dict) for i, frame_name in enumerate(frame_path_list): frame_number += 1 frame = cv2.imread(os.path.join(frame_dir, frame_name)) results = od_model.inference_by_image(frame) frame_bbox = bbox_visualization.draw_bboxes(frame, results) cv2.imwrite(os.path.join(fram_bbox_dir, frame_name), frame_bbox) video_writer.write(frame_bbox) dict_result = dict() dict_result["image_path"] = os.path.join(frame_dir, frame_name) dict_result["cam_address"] = video_path dict_result["module"] = od_model_name dict_result["frame_number"] = int(frame_number / extract_fps * fps) dict_result["timestamp"] = str( convert_framenumber2timestamp(frame_number / extract_fps * fps, fps)) dict_result["results"] = [] dict_result["results"].append({"detection_result": results}) event_result = dict() event_result["cam_address"] = video_path event_result["frame_number"] = int(frame_number / extract_fps * fps) event_result["timestamp"] = str( convert_framenumber2timestamp(frame_number / extract_fps * fps, fps)) event_result["event_result"] = dict() for event_detector in event_detectors: event_result["event_result"][ event_detector.model_name] = event_detector.inference( frame, dict_result) event_results.append(event_result) print( "\rframe number: {:>6}/{}\t/ extract frame number: {:>6}\t/ timestamp: {:>6}" .format( frame_number, len(frame_path_list), int(frame_number / extract_fps * fps), str( convert_framenumber2timestamp( frame_number / extract_fps * fps, fps))), end='') json_result_file = open( os.path.join(json_dir, frame_name.split(".jpg")[0] + ".json"), "w") json.dump(dict_result, json_result_file, indent=4) json_result_file.close() video_writer.release() print() PrintLog.i("Extraction is successfully completed(framecount: {})".format( frame_number)) if os.path.exists(bbox_video_path): PrintLog.i("BBox video is successfully generated(path: {})".format( bbox_video_path)) else: PrintLog.i("BBox video is failed to generated.") return event_results
video_path = option.video_path video_name = video_path.split("/")[-1] extract_fps = option.fps score_threshold = option.score_threshold nms_threshold = option.nms_threshold od_model_name = option.od_model_name event_model_names = option.event_model result_dir = option.result_dir bbox_video_path = os.path.join(result_dir, video_name.split(".mp4")[0] + "_bbox.avi") PrintLog.i("Argument Info:\n" "\tinput video path: {}\n" "\textract fps: {}\n" "\tscore threshold: {}\n" "\tnms threshold: {}\n" "\tobject detection model name: {}\n" "\tevent model names: {}\n" "\tresult directory path: {}\n" "\tbbox video path: {}".format(video_path, extract_fps, score_threshold, nms_threshold, od_model_name, event_model_names, result_dir, bbox_video_path)) # Load Video capture, frame_count, fps = load_video(video_path, extract_fps) # Load Object Detection & Event Detection models od_model, event_detectors = load_models( od_model_name, score_threshold=score_threshold, nms_threshold=nms_threshold, event_model_names=event_model_names)