def __init__(self, cluster_job_name, core_network, lr=1e-4, cluster_dict=None, batchnorm=False, dropout=0.0, n_preds=1, log_dir=None): self.n_preds = n_preds graph, self.sess = self.init_sess(cluster_dict, cluster_job_name) # Why not just use soft device placement? With soft placement, # if we have a bug which prevents an operation being placed on the GPU # (e.g. we're using uint8s for operations that the GPU can't do), # then TensorFlow will be silent and just place the operation on a CPU. # Instead, we want to say: if there's a GPU present, definitely try and # put things on the GPU. If it fails, tell us! if tf.test.gpu_device_name(): worker_device = "/job:{}/task:0/gpu:0".format(cluster_job_name) else: worker_device = "/job:{}/task:0".format(cluster_job_name) device_setter = tf.train.replica_device_setter( cluster=cluster_dict, ps_device="/job:ps/task:0", worker_device=worker_device) self.rps = [] with graph.as_default(): for pred_n in range(n_preds): with tf.device(device_setter): with tf.variable_scope("pred_{}".format(pred_n)): rp = RewardPredictorNetwork(core_network=core_network, dropout=dropout, batchnorm=batchnorm, lr=lr) self.rps.append(rp) self.init_op = tf.global_variables_initializer() # Why save_relative_paths=True? # So that the plain-text 'checkpoint' file written uses relative paths, # which seems to be needed in order to avoid confusing saver.restore() # when restoring from FloydHub runs. self.saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True) self.summaries = self.add_summary_ops() self.checkpoint_file = osp.join(log_dir, 'reward_predictor_checkpoints', 'reward_predictor.ckpt') self.train_writer = tf.summary.FileWriter(osp.join( log_dir, 'reward_predictor', 'train'), flush_secs=5) self.test_writer = tf.summary.FileWriter(osp.join( log_dir, 'reward_predictor', 'test'), flush_secs=5) self.n_steps = 0 self.r_norm = RunningStat(shape=n_preds) misc_logs_dir = osp.join(log_dir, 'reward_predictor', 'misc') easy_tf_log.set_dir(misc_logs_dir)
def test_running_stat(self): for shp in ((), (3, ), (3, 4)): li = [] rs = RunningStat(shp) for i in range(5): val = np.random.randn(*shp) rs.push(val) li.append(val) m = np.mean(li, axis=0) assert np.allclose(rs.mean, m) if i == 0: continue # ddof=1 => calculate unbiased sample variance v = np.var(li, ddof=1, axis=0) assert np.allclose(rs.var, v)
def __init__(self, env, tuning_parameters, replicated_device=None, task_id=0): """ :param env: An environment instance :type env: EnvironmentWrapper :param tuning_parameters: A Preset class instance with all the running paramaters :type tuning_parameters: Preset :param replicated_device: A tensorflow device for distributed training (optional) :type replicated_device: instancemethod :param thread_id: The current thread id :param thread_id: int """ screen.log_title("Creating agent {}".format(task_id)) self.task_id = task_id self.sess = tuning_parameters.sess self.env = tuning_parameters.env_instance = env self.imitation = False # i/o dimensions if not tuning_parameters.env.desired_observation_width or not tuning_parameters.env.desired_observation_height: tuning_parameters.env.desired_observation_width = self.env.width tuning_parameters.env.desired_observation_height = self.env.height self.action_space_size = tuning_parameters.env.action_space_size = self.env.action_space_size self.measurements_size = tuning_parameters.env.measurements_size = self.env.measurements_size if tuning_parameters.agent.use_accumulated_reward_as_measurement: self.measurements_size = tuning_parameters.env.measurements_size = ( self.measurements_size[0] + 1, ) # modules if tuning_parameters.agent.load_memory_from_file_path: screen.log_title( "Loading replay buffer from pickle. Pickle path: {}".format( tuning_parameters.agent.load_memory_from_file_path)) self.memory = read_pickle( tuning_parameters.agent.load_memory_from_file_path) else: self.memory = eval(tuning_parameters.memory + '(tuning_parameters)') # self.architecture = eval(tuning_parameters.architecture) self.has_global = replicated_device is not None self.replicated_device = replicated_device self.worker_device = "/job:worker/task:{}/cpu:0".format( task_id) if replicated_device is not None else "/gpu:0" self.exploration_policy = eval(tuning_parameters.exploration.policy + '(tuning_parameters)') self.evaluation_exploration_policy = eval( tuning_parameters.exploration.evaluation_policy + '(tuning_parameters)') self.evaluation_exploration_policy.change_phase(RunPhase.TEST) # initialize all internal variables self.tp = tuning_parameters self.in_heatup = False self.total_reward_in_current_episode = 0 self.total_steps_counter = 0 self.running_reward = None self.training_iteration = 0 self.current_episode = self.tp.current_episode = 0 self.curr_state = {} self.current_episode_steps_counter = 0 self.episode_running_info = {} self.last_episode_evaluation_ran = 0 self.running_observations = [] logger.set_current_time(self.current_episode) self.main_network = None self.networks = [] self.last_episode_images = [] self.renderer = Renderer() # signals self.signals = [] self.loss = Signal('Loss') self.signals.append(self.loss) self.curr_learning_rate = Signal('Learning Rate') self.signals.append(self.curr_learning_rate) if self.tp.env.normalize_observation and not self.env.is_state_type_image: if not self.tp.distributed or not self.tp.agent.share_statistics_between_workers: self.running_observation_stats = RunningStat( (self.tp.env.desired_observation_width, )) self.running_reward_stats = RunningStat(()) else: self.running_observation_stats = SharedRunningStats( self.tp, replicated_device, shape=(self.tp.env.desired_observation_width, ), name='observation_stats') self.running_reward_stats = SharedRunningStats( self.tp, replicated_device, shape=(), name='reward_stats') # env is already reset at this point. Otherwise we're getting an error where you cannot # reset an env which is not done self.reset_game(do_not_reset_env=True) # use seed if self.tp.seed is not None: random.seed(self.tp.seed) np.random.seed(self.tp.seed)
class RewardPredictorEnsemble: """ An ensemble of reward predictors and associated helper functions. """ def __init__(self, cluster_job_name, core_network, lr=1e-4, cluster_dict=None, batchnorm=False, dropout=0.0, n_preds=1, log_dir=None): self.n_preds = n_preds graph, self.sess = self.init_sess(cluster_dict, cluster_job_name) # Why not just use soft device placement? With soft placement, # if we have a bug which prevents an operation being placed on the GPU # (e.g. we're using uint8s for operations that the GPU can't do), # then TensorFlow will be silent and just place the operation on a CPU. # Instead, we want to say: if there's a GPU present, definitely try and # put things on the GPU. If it fails, tell us! if tf.test.gpu_device_name(): worker_device = "/job:{}/task:0/gpu:0".format(cluster_job_name) else: worker_device = "/job:{}/task:0".format(cluster_job_name) device_setter = tf.train.replica_device_setter( cluster=cluster_dict, ps_device="/job:ps/task:0", worker_device=worker_device) self.rps = [] with graph.as_default(): for pred_n in range(n_preds): with tf.device(device_setter): with tf.variable_scope("pred_{}".format(pred_n)): rp = RewardPredictorNetwork(core_network=core_network, dropout=dropout, batchnorm=batchnorm, lr=lr) self.rps.append(rp) self.init_op = tf.global_variables_initializer() # Why save_relative_paths=True? # So that the plain-text 'checkpoint' file written uses relative paths, # which seems to be needed in order to avoid confusing saver.restore() # when restoring from FloydHub runs. self.saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True) self.summaries = self.add_summary_ops() self.checkpoint_file = osp.join(log_dir, 'reward_predictor_checkpoints', 'reward_predictor.ckpt') self.train_writer = tf.summary.FileWriter(osp.join( log_dir, 'reward_predictor', 'train'), flush_secs=5) self.test_writer = tf.summary.FileWriter(osp.join( log_dir, 'reward_predictor', 'test'), flush_secs=5) self.n_steps = 0 self.r_norm = RunningStat(shape=n_preds) misc_logs_dir = osp.join(log_dir, 'reward_predictor', 'misc') easy_tf_log.set_dir(misc_logs_dir) @staticmethod def init_sess(cluster_dict, cluster_job_name): graph = tf.Graph() cluster = tf.train.ClusterSpec(cluster_dict) config = tf.ConfigProto(gpu_options={'allow_growth': True}) server = tf.train.Server(cluster, job_name=cluster_job_name, config=config) sess = tf.Session(server.target, graph) return graph, sess def add_summary_ops(self): summary_ops = [] for pred_n, rp in enumerate(self.rps): name = 'reward_predictor_accuracy_{}'.format(pred_n) op = tf.summary.scalar(name, rp.accuracy) summary_ops.append(op) name = 'reward_predictor_loss_{}'.format(pred_n) op = tf.summary.scalar(name, rp.loss) summary_ops.append(op) mean_accuracy = tf.reduce_mean([rp.accuracy for rp in self.rps]) op = tf.summary.scalar('reward_predictor_accuracy_mean', mean_accuracy) summary_ops.append(op) mean_loss = tf.reduce_mean([rp.loss for rp in self.rps]) op = tf.summary.scalar('reward_predictor_loss_mean', mean_loss) summary_ops.append(op) summaries = tf.summary.merge(summary_ops) return summaries def init_network(self, load_ckpt_dir=None): if load_ckpt_dir: ckpt_file = tf.train.latest_checkpoint(load_ckpt_dir) if ckpt_file is None: msg = "No reward predictor checkpoint found in '{}'".format( load_ckpt_dir) raise FileNotFoundError(msg) self.saver.restore(self.sess, ckpt_file) print("Loaded reward predictor checkpoint from '{}'".format( ckpt_file)) else: self.sess.run(self.init_op) def save(self): ckpt_name = self.saver.save(self.sess, self.checkpoint_file, self.n_steps) print("Saved reward predictor checkpoint to '{}'".format(ckpt_name)) def raw_rewards(self, obs): """ Return (unnormalized) reward for each frame of a single segment from each member of the ensemble. """ assert_equal(obs.shape[1:], (84, 84, 4)) n_steps = obs.shape[0] feed_dict = {} for rp in self.rps: feed_dict[rp.training] = False feed_dict[rp.s1] = [obs] # This will return nested lists of sizes n_preds x 1 x nsteps # (x 1 because of the batch size of 1) rs = self.sess.run([rp.r1 for rp in self.rps], feed_dict) rs = np.array(rs) # Get rid of the extra x 1 dimension rs = rs[:, 0, :] assert_equal(rs.shape, (self.n_preds, n_steps)) return rs def reward(self, obs): """ Return (normalized) reward for each frame of a single segment. (Normalization involves normalizing the rewards from each member of the ensemble separately, then averaging the resulting rewards across all ensemble members.) """ assert_equal(obs.shape[1:], (84, 84, 4)) n_steps = obs.shape[0] # Get unnormalized rewards ensemble_rs = self.raw_rewards(obs) logging.debug("Unnormalized rewards:\n%s", ensemble_rs) # Normalize rewards # Note that we implement this here instead of in the network itself # because: # * It's simpler not to do it in TensorFlow # * Preference prediction doesn't need normalized rewards. Only # rewards sent to the the RL algorithm need to be normalized. # So we can save on computation. # Page 4: # "We normalized the rewards produced by r^ to have zero mean and # constant standard deviation." # Page 15: (Atari) # "Since the reward predictor is ultimately used to compare two sums # over timesteps, its scale is arbitrary, and we normalize it to have # a standard deviation of 0.05" # Page 5: # "The estimate r^ is defined by independently normalizing each of # these predictors..." # We want to keep track of running mean/stddev for each member of the # ensemble separately, so we have to be a little careful here. assert_equal(ensemble_rs.shape, (self.n_preds, n_steps)) ensemble_rs = ensemble_rs.transpose() assert_equal(ensemble_rs.shape, (n_steps, self.n_preds)) for ensemble_rs_step in ensemble_rs: self.r_norm.push(ensemble_rs_step) ensemble_rs -= self.r_norm.mean ensemble_rs /= (self.r_norm.std + 1e-12) ensemble_rs *= 0.05 ensemble_rs = ensemble_rs.transpose() assert_equal(ensemble_rs.shape, (self.n_preds, n_steps)) logging.debug("Reward mean/stddev:\n%s %s", self.r_norm.mean, self.r_norm.std) logging.debug("Normalized rewards:\n%s", ensemble_rs) # "...and then averaging the results." rs = np.mean(ensemble_rs, axis=0) assert_equal(rs.shape, (n_steps, )) logging.debug("After ensemble averaging:\n%s", rs) return rs def preferences(self, s1s, s2s): """ Predict probability of human preferring one segment over another for each segment in the supplied batch of segment pairs. """ feed_dict = {} for rp in self.rps: feed_dict[rp.s1] = s1s feed_dict[rp.s2] = s2s feed_dict[rp.training] = False preds = self.sess.run([rp.pred for rp in self.rps], feed_dict) return preds def train(self, prefs_train, prefs_val, val_interval): """ Train all ensemble members for one epoch. """ print("Training/testing with %d/%d preferences" % (len(prefs_train), len(prefs_val))) start_steps = self.n_steps start_time = time.time() for _, batch in enumerate( batch_iter(prefs_train.prefs, batch_size=32, shuffle=True)): self.train_step(batch, prefs_train) self.n_steps += 1 if self.n_steps and self.n_steps % val_interval == 0: self.val_step(prefs_val) end_time = time.time() end_steps = self.n_steps rate = (end_steps - start_steps) / (end_time - start_time) easy_tf_log.tflog('reward_predictor_training_steps_per_second', rate) def train_step(self, batch, prefs_train): s1s = [prefs_train.segments[k1] for k1, k2, pref, in batch] s2s = [prefs_train.segments[k2] for k1, k2, pref, in batch] prefs = [pref for k1, k2, pref, in batch] feed_dict = {} for rp in self.rps: feed_dict[rp.s1] = s1s feed_dict[rp.s2] = s2s feed_dict[rp.pref] = prefs feed_dict[rp.training] = True ops = [self.summaries, [rp.train for rp in self.rps]] summaries, _ = self.sess.run(ops, feed_dict) self.train_writer.add_summary(summaries, self.n_steps) def val_step(self, prefs_val): val_batch_size = 32 if len(prefs_val) <= val_batch_size: batch = prefs_val.prefs else: idxs = np.random.choice(len(prefs_val.prefs), val_batch_size, replace=False) batch = [prefs_val.prefs[i] for i in idxs] s1s = [prefs_val.segments[k1] for k1, k2, pref, in batch] s2s = [prefs_val.segments[k2] for k1, k2, pref, in batch] prefs = [pref for k1, k2, pref, in batch] feed_dict = {} for rp in self.rps: feed_dict[rp.s1] = s1s feed_dict[rp.s2] = s2s feed_dict[rp.pref] = prefs feed_dict[rp.training] = False summaries = self.sess.run(self.summaries, feed_dict) self.test_writer.add_summary(summaries, self.n_steps)
def run(): np.random.seed(args.seed) torch.manual_seed(args.seed) gym.logger.set_level(40) env = gym.make(args.env_name) state_size = env.observation_space.shape[0] action_size = env.action_space.shape[0] state_stat = RunningStat(env.observation_space.shape, eps=1e-2) action_space = env.action_space policy = Policy(state_size, action_size, args.hidden_size, action_space.low, action_space.high) num_params = policy.num_params optim = Adam(num_params, args.lr) ray.init(num_cpus=args.num_parallel) return_list = [] for epoch in range(100000): ##################################### ### Rollout and Update State Stat ### ##################################### policy.set_state_stat(state_stat.mean, state_stat.std) # set diff params (mirror sampling) assert args.episodes_per_batch % 2 == 0 diff_params = torch.empty((args.episodes_per_batch, num_params), dtype=torch.float) diff_params_pos = torch.randn(args.episodes_per_batch // 2, num_params) * args.noise_std diff_params[::2] = diff_params_pos diff_params[1::2] = -diff_params_pos rets = [] num_episodes_popped = 0 num_timesteps_popped = 0 while num_episodes_popped < args.episodes_per_batch \ and num_timesteps_popped < args.timesteps_per_batch: #or num_timesteps_popped < args.timesteps_per_batch: results = [] for i in range(min(args.episodes_per_batch, 500)): # set policy randomized_policy = deepcopy(policy) randomized_policy.add_params(diff_params[num_episodes_popped + i]) # rollout results.append( rollout.remote(randomized_policy, args.env_name, seed=np.random.randint(0, 10000000))) for result in results: ret, timesteps, states = ray.get(result) rets.append(ret) # update state stat if states is not None: state_stat.increment(states.sum(axis=0), np.square(states).sum(axis=0), states.shape[0]) num_timesteps_popped += timesteps num_episodes_popped += 1 rets = np.array(rets, dtype=np.float32) diff_params = diff_params[:num_episodes_popped] best_policy_idx = np.argmax(rets) best_policy = deepcopy(policy) best_policy.add_params(diff_params[best_policy_idx]) best_rets = [ rollout.remote(best_policy, args.env_name, seed=np.random.randint(0, 10000000), calc_state_stat_prob=0.0, test=True) for _ in range(10) ] best_rets = np.average(ray.get(best_rets)) print('epoch:', epoch, 'mean:', np.average(rets), 'max:', np.max(rets), 'best:', best_rets) with open(args.outdir + '/return.csv', 'w') as f: return_list.append( [epoch, np.max(rets), np.average(rets), best_rets]) writer = csv.writer(f, lineterminator='\n') writer.writerows(return_list) plt.figure() sns.lineplot(data=np.array(return_list)[:, 1:]) plt.savefig(args.outdir + '/return.png') plt.close('all') ############# ### Train ### ############# fitness = compute_centered_ranks(rets).reshape(-1, 1) if args.weight_decay > 0: #l2_decay = args.weight_decay * ((policy.get_params() + diff_params)**2).mean(dim=1, keepdim=True).numpy() l1_decay = args.weight_decay * (policy.get_params() + diff_params).mean( dim=1, keepdim=True).numpy() fitness += l1_decay grad = (fitness * diff_params.numpy()).mean(axis=0) policy = optim.update(policy, -grad)
def run(): np.random.seed(args.seed) torch.manual_seed(args.seed) gym.logger.set_level(40) env = gym.make(args.env_name) state_size = env.observation_space.shape[0] action_size = env.action_space.shape[0] state_stat = RunningStat( env.observation_space.shape, eps=1e-2 ) action_space = env.action_space policy = Policy(state_size, action_size, args.hidden_size, action_space.low, action_space.high) num_params = policy.num_params es = cma.CMAEvolutionStrategy([0] * num_params, args.sigma_init, {'popsize': args.popsize, }) ray.init(num_cpus=args.num_parallel) return_list = [] for epoch in range(100000): ##################################### ### Rollout and Update State Stat ### ##################################### solutions = np.array(es.ask(), dtype=np.float32) policy.set_state_stat(state_stat.mean, state_stat.std) rets = [] results = [] for i in range(args.popsize): # set policy randomized_policy = deepcopy(policy) randomized_policy.set_params(solutions[i]) # rollout results.append(rollout.remote(randomized_policy, args.env_name, seed=np.random.randint(0,10000000))) for result in results: ret, timesteps, states = ray.get(result) rets.append(ret) # update state stat if states is not None: state_stat.increment(states.sum(axis=0), np.square(states).sum(axis=0), states.shape[0]) rets = np.array(rets, dtype=np.float32) best_policy_idx = np.argmax(rets) best_policy = deepcopy(policy) best_policy.set_params(solutions[best_policy_idx]) best_rets = [rollout.remote(best_policy, args.env_name, seed=np.random.randint(0,10000000), calc_state_stat_prob=0.0, test=True) for _ in range(10)] best_rets = np.average(ray.get(best_rets)) print('epoch:', epoch, 'mean:', np.average(rets), 'max:', np.max(rets), 'best:', best_rets) with open(args.outdir + '/return.csv', 'w') as f: return_list.append([epoch, np.max(rets), np.average(rets), best_rets]) writer = csv.writer(f, lineterminator='\n') writer.writerows(return_list) plt.figure() sns.lineplot(data=np.array(return_list)[:,1:]) plt.savefig(args.outdir + '/return.png') plt.close('all') ############# ### Train ### ############# ranks = compute_centered_ranks(rets) fitness = ranks if args.weight_decay > 0: l2_decay = compute_weight_decay(args.weight_decay, solutions) fitness -= l2_decay # convert minimize to maximize es.tell(solutions, fitness)
def __init__(self, actions_size, policy, sess=None, gamma=0.99, lr=1e-5, batch_size=32, num_itr=20, use_vairl=False, mutual_information=0.5, alpha=0.0005, with_action=False, name='reward_model', entropy_weight=0.5, with_value=True, fixed_reward_model=False, vs=None, **kwargs): # Initialize some model attributes # RunningStat to normalize reward from the model if not fixed_reward_model: self.r_norm = DynamicRunningStat() else: self.r_norm = RunningStat(1) # Discount factor self.gamma = gamma # Policy agent needed to compute the discriminator self.policy = policy # Demonstrations buffer self.expert_traj = None self.validation_traj = None # Num of actions available in the environment self.actions_size = actions_size # If is state-only or state-action discriminator self.with_action = with_action # TF parameters self.sess = sess self.lr = lr self.batch_size = batch_size self.num_itr = num_itr self.entropy_weight = entropy_weight # Use Variation Bottleneck Autoencoder self.use_vairl = use_vairl self.mutual_information = mutual_information self.alpha = alpha self.name = name # Buffer of policy experience with which train the reward model self.buffer = dict() self.create_buffer() with tf.compat.v1.variable_scope(name) as vs: with tf.compat.v1.variable_scope('irl'): # Input spec for both reward and value function # Current state (DeepCrawl spec) self.global_state = tf.compat.v1.placeholder( tf.float32, [None, 10, 10, 52], name='global_state') self.local_state = tf.compat.v1.placeholder(tf.float32, [None, 5, 5, 52], name='local_state') self.local_two_state = tf.compat.v1.placeholder( tf.float32, [None, 3, 3, 52], name='local_two_state') self.agent_stats = tf.compat.v1.placeholder(tf.int32, [None, 16], name='agent_stats') self.target_stats = tf.compat.v1.placeholder( tf.int32, [None, 15], name='target_stats') if self.with_action: self.acts = tf.compat.v1.placeholder(tf.int32, [None, 1], name='acts') # Next state (DeepCrawl spec) - for discriminator self.global_state_n = tf.compat.v1.placeholder( tf.float32, [None, 10, 10, 52], name='global_state_n') self.local_state_n = tf.compat.v1.placeholder( tf.float32, [None, 5, 5, 52], name='local_state_n') self.local_two_state_n = tf.compat.v1.placeholder( tf.float32, [None, 3, 3, 52], name='local_two_state_n') self.agent_stats_n = tf.compat.v1.placeholder( tf.int32, [None, 16], name='agent_stats_n') self.target_stats_n = tf.compat.v1.placeholder( tf.int32, [None, 15], name='target_stats_n') # Probability distribution and labels - whether or not this state belongs to expert buffer self.probs = tf.compat.v1.placeholder(tf.float32, [None, 1], name='probs') self.labels = tf.compat.v1.placeholder(tf.float32, [None, 1], name='labels') # For V-AIRL self.use_noise = tf.compat.v1.placeholder(shape=[1], dtype=tf.float32, name="noise") self.z_sigma_g = None self.z_sigma_h = None if self.use_vairl: self.z_sigma_g = tf.compat.v1.get_variable( 'z_sigma_g', 100, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) self.z_sigma_g_sq = self.z_sigma_g * self.z_sigma_g self.z_log_sigma_g_sq = tf.compat.v1.log( self.z_sigma_g_sq + eps) self.z_sigma_h = tf.compat.v1.get_variable( "z_sigma_h", 100, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) self.z_sigma_h_sq = self.z_sigma_h * self.z_sigma_h self.z_log_sigma_h_sq = tf.compat.v1.log( self.z_sigma_h_sq + eps) # Reward Funvtion with tf.compat.v1.variable_scope('reward'): self.reward, self.z_g = self.conv_net( self.global_state, self.local_state, self.local_two_state, self.agent_stats, self.target_stats, with_action=self.with_action, z_sigma=self.z_sigma_g, use_noise=self.use_noise) # Value Function if with_value: with tf.compat.v1.variable_scope('value'): self.value, self.z_h = self.conv_net( self.global_state, self.local_state, self.local_two_state, self.agent_stats, self.target_stats, z_sigma=self.z_sigma_h, use_noise=self.use_noise, with_action=False) with tf.compat.v1.variable_scope('value', reuse=True): self.value_n, self.z_1_h = self.conv_net( self.global_state_n, self.local_state_n, self.local_two_state_n, self.agent_stats_n, self.target_stats_n, z_sigma=self.z_sigma_h, use_noise=self.use_noise, with_action=False) self.f = self.reward + self.gamma * self.value_n - self.value else: self.f = self.reward # Discriminator self.discriminator = tf.math.divide( tf.math.exp(self.f), tf.math.add(tf.math.exp(self.f), self.probs)) # Loss Function self.loss = -tf.reduce_mean( (self.labels * tf.math.log(self.discriminator + eps)) + ((1 - self.labels) * tf.math.log(1 - self.discriminator + eps))) # Loss function modification for V-AIRL if self.use_vairl: # Define beta self.beta = tf.compat.v1.get_variable( "airl_beta", [], trainable=False, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) # Number of batch element self.batch = tf.compat.v1.shape(self.z_g)[0] self.batch_index = tf.dtypes.cast(self.batch / 2, tf.int32) self.kl_loss = tf.reduce_mean(-tf.reduce_sum( 1 + self.z_log_sigma_g_sq - 0.5 * tf.square(self.z_g[0:self.batch_index, :] * self.z_h[0:self.batch_index, :] * self.z_1_h[0:self.batch_index, :]) - 0.5 * tf.square(self.z_g[self.batch_index:, :] * self.z_h[self.batch_index:, :] * self.z_1_h[self.batch_index:, :]) - tf.exp(self.z_log_sigma_g_sq), 1, )) self.loss = self.beta * ( self.kl_loss - self.mutual_information) + self.loss # Adam optimizer with gradient clipping optimizer = tf.compat.v1.train.AdamOptimizer(self.lr) gradients, variables = zip( *optimizer.compute_gradients(self.loss)) gradients, _ = tf.compat.v1.clip_by_global_norm(gradients, 1.0) self.step = optimizer.apply_gradients(zip( gradients, variables)) #self.step = tf.compat.v1.train.AdamOptimizer(learning_rate=self.lr).minimize(self.loss) if self.use_vairl: self.make_beta_update() self.vs = vs self.saver = tf.compat.v1.train.Saver(max_to_keep=None)
class RewardModel: def __init__(self, actions_size, policy, sess=None, gamma=0.99, lr=1e-5, batch_size=32, num_itr=20, use_vairl=False, mutual_information=0.5, alpha=0.0005, with_action=False, name='reward_model', entropy_weight=0.5, with_value=True, fixed_reward_model=False, vs=None, **kwargs): # Initialize some model attributes # RunningStat to normalize reward from the model if not fixed_reward_model: self.r_norm = DynamicRunningStat() else: self.r_norm = RunningStat(1) # Discount factor self.gamma = gamma # Policy agent needed to compute the discriminator self.policy = policy # Demonstrations buffer self.expert_traj = None self.validation_traj = None # Num of actions available in the environment self.actions_size = actions_size # If is state-only or state-action discriminator self.with_action = with_action # TF parameters self.sess = sess self.lr = lr self.batch_size = batch_size self.num_itr = num_itr self.entropy_weight = entropy_weight # Use Variation Bottleneck Autoencoder self.use_vairl = use_vairl self.mutual_information = mutual_information self.alpha = alpha self.name = name # Buffer of policy experience with which train the reward model self.buffer = dict() self.create_buffer() with tf.compat.v1.variable_scope(name) as vs: with tf.compat.v1.variable_scope('irl'): # Input spec for both reward and value function # Current state (DeepCrawl spec) self.global_state = tf.compat.v1.placeholder( tf.float32, [None, 10, 10, 52], name='global_state') self.local_state = tf.compat.v1.placeholder(tf.float32, [None, 5, 5, 52], name='local_state') self.local_two_state = tf.compat.v1.placeholder( tf.float32, [None, 3, 3, 52], name='local_two_state') self.agent_stats = tf.compat.v1.placeholder(tf.int32, [None, 16], name='agent_stats') self.target_stats = tf.compat.v1.placeholder( tf.int32, [None, 15], name='target_stats') if self.with_action: self.acts = tf.compat.v1.placeholder(tf.int32, [None, 1], name='acts') # Next state (DeepCrawl spec) - for discriminator self.global_state_n = tf.compat.v1.placeholder( tf.float32, [None, 10, 10, 52], name='global_state_n') self.local_state_n = tf.compat.v1.placeholder( tf.float32, [None, 5, 5, 52], name='local_state_n') self.local_two_state_n = tf.compat.v1.placeholder( tf.float32, [None, 3, 3, 52], name='local_two_state_n') self.agent_stats_n = tf.compat.v1.placeholder( tf.int32, [None, 16], name='agent_stats_n') self.target_stats_n = tf.compat.v1.placeholder( tf.int32, [None, 15], name='target_stats_n') # Probability distribution and labels - whether or not this state belongs to expert buffer self.probs = tf.compat.v1.placeholder(tf.float32, [None, 1], name='probs') self.labels = tf.compat.v1.placeholder(tf.float32, [None, 1], name='labels') # For V-AIRL self.use_noise = tf.compat.v1.placeholder(shape=[1], dtype=tf.float32, name="noise") self.z_sigma_g = None self.z_sigma_h = None if self.use_vairl: self.z_sigma_g = tf.compat.v1.get_variable( 'z_sigma_g', 100, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) self.z_sigma_g_sq = self.z_sigma_g * self.z_sigma_g self.z_log_sigma_g_sq = tf.compat.v1.log( self.z_sigma_g_sq + eps) self.z_sigma_h = tf.compat.v1.get_variable( "z_sigma_h", 100, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) self.z_sigma_h_sq = self.z_sigma_h * self.z_sigma_h self.z_log_sigma_h_sq = tf.compat.v1.log( self.z_sigma_h_sq + eps) # Reward Funvtion with tf.compat.v1.variable_scope('reward'): self.reward, self.z_g = self.conv_net( self.global_state, self.local_state, self.local_two_state, self.agent_stats, self.target_stats, with_action=self.with_action, z_sigma=self.z_sigma_g, use_noise=self.use_noise) # Value Function if with_value: with tf.compat.v1.variable_scope('value'): self.value, self.z_h = self.conv_net( self.global_state, self.local_state, self.local_two_state, self.agent_stats, self.target_stats, z_sigma=self.z_sigma_h, use_noise=self.use_noise, with_action=False) with tf.compat.v1.variable_scope('value', reuse=True): self.value_n, self.z_1_h = self.conv_net( self.global_state_n, self.local_state_n, self.local_two_state_n, self.agent_stats_n, self.target_stats_n, z_sigma=self.z_sigma_h, use_noise=self.use_noise, with_action=False) self.f = self.reward + self.gamma * self.value_n - self.value else: self.f = self.reward # Discriminator self.discriminator = tf.math.divide( tf.math.exp(self.f), tf.math.add(tf.math.exp(self.f), self.probs)) # Loss Function self.loss = -tf.reduce_mean( (self.labels * tf.math.log(self.discriminator + eps)) + ((1 - self.labels) * tf.math.log(1 - self.discriminator + eps))) # Loss function modification for V-AIRL if self.use_vairl: # Define beta self.beta = tf.compat.v1.get_variable( "airl_beta", [], trainable=False, dtype=tf.float32, initializer=tf.compat.v1.ones_initializer(), ) # Number of batch element self.batch = tf.compat.v1.shape(self.z_g)[0] self.batch_index = tf.dtypes.cast(self.batch / 2, tf.int32) self.kl_loss = tf.reduce_mean(-tf.reduce_sum( 1 + self.z_log_sigma_g_sq - 0.5 * tf.square(self.z_g[0:self.batch_index, :] * self.z_h[0:self.batch_index, :] * self.z_1_h[0:self.batch_index, :]) - 0.5 * tf.square(self.z_g[self.batch_index:, :] * self.z_h[self.batch_index:, :] * self.z_1_h[self.batch_index:, :]) - tf.exp(self.z_log_sigma_g_sq), 1, )) self.loss = self.beta * ( self.kl_loss - self.mutual_information) + self.loss # Adam optimizer with gradient clipping optimizer = tf.compat.v1.train.AdamOptimizer(self.lr) gradients, variables = zip( *optimizer.compute_gradients(self.loss)) gradients, _ = tf.compat.v1.clip_by_global_norm(gradients, 1.0) self.step = optimizer.apply_gradients(zip( gradients, variables)) #self.step = tf.compat.v1.train.AdamOptimizer(learning_rate=self.lr).minimize(self.loss) if self.use_vairl: self.make_beta_update() self.vs = vs self.saver = tf.compat.v1.train.Saver(max_to_keep=None) ## Layers def linear(self, inp, inner_size, name='linear', bias=True, activation=None, init=None): with tf.compat.v1.variable_scope(name): lin = tf.compat.v1.layers.dense(inp, inner_size, name=name, activation=activation, use_bias=bias, kernel_initializer=init) return lin def conv_layer_2d(self, input, filters, kernel_size, strides=(1, 1), padding="SAME", name='conv', activation=None, bias=True): with tf.compat.v1.variable_scope(name): conv = tf.compat.v1.layers.conv2d(input, filters, kernel_size, strides, padding=padding, name=name, activation=activation, use_bias=bias) return conv def embedding(self, input, indices, size, name='embs'): with tf.compat.v1.variable_scope(name): shape = (indices, size) stddev = min(0.1, sqrt(2.0 / (product(xs=shape[:-1]) + shape[-1]))) initializer = tf.random.normal(shape=shape, stddev=stddev, dtype=tf.float32) W = tf.Variable(initial_value=initializer, trainable=True, validate_shape=True, name='W', dtype=tf.float32, shape=shape) return tf.nn.tanh( tf.compat.v1.nn.embedding_lookup(params=W, ids=input, max_norm=None)) # Netowrk specification def conv_net(self, global_state, local_state, local_two_state, agent_stats, target_stats, z_sigma=None, use_noise=None, with_action=False): conv_10 = self.conv_layer_2d(global_state, 32, [1, 1], name='conv_10', activation=tf.nn.tanh) conv_11 = self.conv_layer_2d(conv_10, 32, [3, 3], name='conv_11', activation=tf.nn.leaky_relu) conv_12 = self.conv_layer_2d(conv_11, 32, [3, 3], name='conv_12', activation=tf.nn.leaky_relu) fc11 = tf.reshape(conv_12, [-1, 10 * 10 * 32]) embs_41 = tf.nn.tanh( self.embedding(agent_stats, 129, 32, name='embs_41')) embs_41 = tf.reshape(embs_41, [-1, 16 * 32]) fc_41 = self.linear(embs_41, 100, name='fc_41', activation=tf.nn.leaky_relu) embs_51 = self.embedding(target_stats, 125, 32, name='embs_51') embs_51 = tf.reshape(embs_51, [-1, 15 * 32]) fc_51 = self.linear(embs_51, 100, name='fc_51', activation=tf.nn.leaky_relu) all_flat = tf.concat([fc11, fc_41, fc_51], axis=1) all_flat = self.linear(all_flat, 32, name='fc1', activation=tf.nn.leaky_relu) if with_action: hot_acts = tf.one_hot(self.acts, self.actions_size) hot_acts = tf.reshape(hot_acts, [-1, self.actions_size]) all_flat = tf.concat([all_flat, hot_acts], axis=1) z_mean = None fc2 = self.linear(all_flat, 32, name='fc2', activation=tf.nn.leaky_relu) # In case we want to use V-AIRL if self.use_vairl: z_mean = self.linear( fc2, 32, name='z_mean', init=tf.compat.v1.initializers.variance_scaling(0.01)) noise = tf.compat.v1.random_normal(tf.compat.v1.shape(z_mean), dtype=tf.float32) z = z_mean + z_sigma * noise * use_noise fc2 = z return self.linear(fc2, 1, name='out'), z_mean else: return self.linear(fc2, 1, name='out'), None # Train method of the discriminator def train(self): losses = [] # Update discriminator for it in range(self.num_itr): expert_batch_idxs = random.sample( range(len(self.expert_traj['obs'])), self.batch_size) policy_batch_idxs = random.sample(range(len(self.buffer['obs'])), self.batch_size) #expert_batch_idxs = np.random.randint(0, len(expert_traj['obs']), batch_size) #policy_batch_idxs = np.random.randint(0, len(policy_traj['obs']), batch_size) expert_obs = [ self.expert_traj['obs'][id] for id in expert_batch_idxs ] policy_obs = [self.buffer['obs'][id] for id in policy_batch_idxs] expert_obs_n = [ self.expert_traj['obs_n'][id] for id in expert_batch_idxs ] policy_obs_n = [ self.buffer['obs_n'][id] for id in policy_batch_idxs ] expert_acts = [ self.expert_traj['acts'][id] for id in expert_batch_idxs ] policy_acts = [self.buffer['acts'][id] for id in policy_batch_idxs] expert_probs = [] for (index, state) in enumerate(expert_obs): _, probs = self.select_action(state) expert_probs.append(probs[expert_acts[index]]) policy_probs = [] for (index, state) in enumerate(policy_obs): _, probs = self.select_action(state) policy_probs.append(probs[policy_acts[index]]) expert_probs = np.asarray(expert_probs) policy_probs = np.asarray(policy_probs) labels = np.ones((self.batch_size, 1)) labels = np.concatenate([labels, np.zeros((self.batch_size, 1))]) e_states = self.obs_to_state(expert_obs) p_states = self.obs_to_state(policy_obs) all_global = np.concatenate([e_states[0], p_states[0]], axis=0) all_local = np.concatenate([e_states[1], p_states[1]], axis=0) all_local_two = np.concatenate([e_states[2], p_states[2]], axis=0) all_agent_stats = np.concatenate([e_states[3], p_states[3]], axis=0) all_target_stats = np.concatenate([e_states[4], p_states[4]], axis=0) e_states_n = self.obs_to_state(expert_obs_n) p_states_n = self.obs_to_state(policy_obs_n) all_global_n = np.concatenate([e_states_n[0], p_states_n[0]], axis=0) all_local_n = np.concatenate([e_states_n[1], p_states_n[1]], axis=0) all_local_two_n = np.concatenate([e_states_n[2], p_states_n[2]], axis=0) all_agent_stats_n = np.concatenate([e_states_n[3], p_states_n[3]], axis=0) all_target_stats_n = np.concatenate([e_states_n[4], p_states_n[4]], axis=0) all_probs = np.concatenate([expert_probs, policy_probs], axis=0) all_probs = np.expand_dims(all_probs, axis=1) feed_dict = { self.local_state: all_local, self.local_two_state: all_local_two, self.agent_stats: all_agent_stats, self.target_stats: all_target_stats, self.local_state_n: all_local_n, self.local_two_state_n: all_local_two_n, self.agent_stats_n: all_agent_stats_n, self.target_stats_n: all_target_stats_n, self.probs: all_probs, self.labels: labels, self.use_noise: [1] } if self.with_action: all_acts = np.concatenate([expert_acts, policy_acts], axis=0) all_acts = np.expand_dims(all_acts, axis=1) feed_dict[self.acts] = all_acts feed_dict[self.global_state] = all_global feed_dict[self.global_state_n] = all_global_n if self.use_vairl: loss, f, _, _, kl_loss = self.sess.run([ self.loss, self.f, self.step, self.update_beta, self.kl_loss ], feed_dict=feed_dict) else: loss, f, disc, _ = self.sess.run( [self.loss, self.f, self.discriminator, self.step], feed_dict=feed_dict) losses.append(loss) # Update nomralization parameters for it in range(self.num_itr): expert_batch_idxs = random.sample( range(len(self.expert_traj['obs'])), self.batch_size) policy_batch_idxs = random.sample(range(len(self.buffer['obs'])), self.batch_size) expert_obs = [ self.expert_traj['obs'][id] for id in expert_batch_idxs ] policy_obs = [self.buffer['obs'][id] for id in policy_batch_idxs] expert_obs_n = [ self.expert_traj['obs_n'][id] for id in expert_batch_idxs ] policy_obs_n = [ self.buffer['obs_n'][id] for id in policy_batch_idxs ] expert_acts = [ self.expert_traj['acts'][id] for id in expert_batch_idxs ] policy_acts = [self.buffer['acts'][id] for id in policy_batch_idxs] e_states = self.obs_to_state(expert_obs) p_states = self.obs_to_state(policy_obs) all_global = np.concatenate([e_states[0], p_states[0]], axis=0) all_local = np.concatenate([e_states[1], p_states[1]], axis=0) all_local_two = np.concatenate([e_states[2], p_states[2]], axis=0) all_agent_stats = np.concatenate([e_states[3], p_states[3]], axis=0) all_target_stats = np.concatenate([e_states[4], p_states[4]], axis=0) e_states_n = self.obs_to_state(expert_obs_n) p_states_n = self.obs_to_state(policy_obs_n) all_global_n = np.concatenate([e_states_n[0], p_states_n[0]], axis=0) all_local_n = np.concatenate([e_states_n[1], p_states_n[1]], axis=0) all_local_two_n = np.concatenate([e_states_n[2], p_states_n[2]], axis=0) all_agent_stats_n = np.concatenate([e_states_n[3], p_states_n[3]], axis=0) all_target_stats_n = np.concatenate([e_states_n[4], p_states_n[4]], axis=0) expert_probs = [] for (index, state) in enumerate(expert_obs): _, probs = self.select_action(state) expert_probs.append(probs[expert_acts[index]]) policy_probs = [] for (index, state) in enumerate(policy_obs): _, probs = self.select_action(state) policy_probs.append(probs[policy_acts[index]]) expert_probs = np.asarray(expert_probs) policy_probs = np.asarray(policy_probs) probs = np.concatenate([expert_probs, policy_probs], axis=0) probs = np.expand_dims(probs, axis=1) feed_dict = { self.global_state: all_global, self.local_state: all_local, self.local_two_state: all_local_two, self.agent_stats: all_agent_stats, self.target_stats: all_target_stats, self.global_state_n: all_global_n, self.local_state_n: all_local_n, self.local_two_state_n: all_local_two_n, self.agent_stats_n: all_agent_stats_n, self.target_stats_n: all_target_stats_n, } if self.use_vairl: feed_dict[self.use_noise] = [0] if self.with_action: all_acts = np.concatenate([expert_acts, policy_acts], axis=0) all_acts = np.expand_dims(all_acts, axis=1) feed_dict[self.acts] = all_acts feed_dict[self.global_state] = all_global feed_dict[self.global_state_n] = all_global_n f = self.sess.run([self.f], feed_dict=feed_dict) f -= self.entropy_weight * np.log(probs) f = np.squeeze(f) self.push_reward(f) # Update Dynamic Running Stat if isinstance(self.r_norm, DynamicRunningStat): self.r_norm.reset() return np.mean(losses), 0 # Eval without discriminator - only reward function def eval(self, obs, obs_n, acts=None, probs=None): states = self.obs_to_state(obs) feed_dict = { self.global_state: states[0], self.local_state: states[1], self.local_two_state: states[2], self.agent_stats: states[3], self.target_stats: states[4], self.use_noise: [0] } if self.with_action and acts is not None: acts = np.expand_dims(acts, axis=1) feed_dict[self.acts] = acts reward = self.sess.run([self.reward], feed_dict=feed_dict) if probs != None: reward -= self.entropy_weight * np.log(probs) # Normalize the reward #self.r_norm.push(reward[0][0]) #reward = [[self.normalize_rewards(reward[0][0])]] #if self.r_norm.n == 0: # reward = [[0]] return reward[0][0] # Eval with the discriminator - it returns an entropy regularized objective def eval_discriminator(self, obs, obs_n, probs, acts=None): states = self.obs_to_state(obs) states_n = self.obs_to_state(obs_n) probs = np.expand_dims(probs, axis=1) feed_dict = { self.global_state: states[0], self.local_state: states[1], self.local_two_state: states[2], self.agent_stats: states[3], self.target_stats: states[4], self.global_state_n: states[0], self.local_state_n: states_n[1], self.local_two_state_n: states_n[2], self.agent_stats_n: states_n[3], self.target_stats_n: states_n[4], self.use_noise: [0] } if self.with_action and acts is not None: acts = np.expand_dims(acts, axis=1) feed_dict[self.acts] = acts f = self.sess.run([self.f], feed_dict=feed_dict) f -= self.entropy_weight * np.log(probs) f = self.normalize_rewards(f) return f # Transform a DeepCrawl obs to state def obs_to_state(self, obs): global_batch = np.stack( [np.asarray(state['global_in']) for state in obs]) local_batch = np.stack( [np.asarray(state['local_in']) for state in obs]) local_two_batch = np.stack( [np.asarray(state['local_in_two']) for state in obs]) agent_stats_batch = np.stack( [np.asarray(state['agent_stats']) for state in obs]) target_stats_batch = np.stack( [np.asarray(state['target_stats']) for state in obs]) return global_batch, local_batch, local_two_batch, agent_stats_batch, target_stats_batch # For V-AIRL def make_beta_update(self): new_beta = tf.maximum( self.beta + self.alpha * (self.kl_loss - self.mutual_information), eps) with tf.control_dependencies([self.step]): self.update_beta = tf.compat.v1.assign(self.beta, new_beta) # Normalize the reward for each frame of the sequence def push_reward(self, rewards): for r in rewards: self.r_norm.push(r) def normalize_rewards(self, rewards): rewards -= self.r_norm.mean rewards /= (self.r_norm.std + 1e-12) rewards *= 0.05 return rewards # Select action from the policy and fetch the probability distribution over the action space def select_action(self, state): act, _, probs = self.policy.eval([state]) return (act, probs[0]) # Update demonstrations def set_demonstrations(self, demonstrations, validations): self.expert_traj = demonstrations if validations is not None: self.validation_traj = validations # Create the replay buffer with which train the discriminator def create_buffer(self): self.buffer['obs'] = [] self.buffer['obs_n'] = [] self.buffer['acts'] = [] # Add a transition to the buffer def add_to_buffer(self, obs, obs_n, acts, buffer_length=100000): if len(self.buffer['obs']) >= buffer_length: random_index = np.random.randint(0, len(self.buffer['obs'])) del self.buffer['obs'][random_index] del self.buffer['obs_n'][random_index] del self.buffer['acts'][random_index] self.buffer['obs'].append(obs) self.buffer['obs_n'].append(obs_n) self.buffer['acts'].append(acts) # Create and return some demonstrations [(states, actions, frames)]. The order of the demonstrations must be from # best to worst. The number of demonstrations is given by the user def create_demonstrations(self, env, save_demonstrations=True, inference=False, verbose=False, with_policy=False, num_episode=31, max_timestep=20): end = False # Initialize trajectories buffer expert_traj = { 'obs': [], 'obs_n': [], 'acts': [], } val_traj = {'obs': [], 'obs_n': [], 'acts': []} if with_policy is None: num_episode = None episode = 1 while not end: # Make another demonstration print('Demonstration n° ' + str(episode)) # Reset the environment state = env.reset() states = [state] actions = [] done = False step = 0 cum_reward = 0 # New sequence of states and actions while not done: try: # Input the action and save the new state and action step += 1 print("Timestep: " + str(step)) if verbose: env.print_observation(state) if not with_policy: action = input('action: ') if action == "f": done = True continue while env.command_to_action(action) >= 99: action = input('action: ') else: action, probs = self.select_action(state) print(action) state_n, done, reward = env.execute(action) cum_reward += reward if not with_policy: action = env.command_to_action(action) # If inference is true, print the reward if inference: _, probs = self.select_action(state) reward = self.eval([state], [state_n], [action]) # print('Discriminator probability: ' + str(disc)) print('Unnormalize reward: ' + str(reward)) reward = self.normalize_rewards(reward) print('Normalize reward: ' + str(reward)) print('Probability of state space: ') print(probs) state = state_n states.append(state) actions.append(action) if step >= max_timestep: done = True except Exception as e: print(e) continue if not inference: y = None print('Demonstration number: ' + str(episode)) if with_policy: if episode < num_episode: print(state_n['target_stats'][0]) if True: y = 'y' else: y = 'n' while y != 'y' and y != 'n': y = input('Do you want to save this demonstration? [y/n] ') if y == 'y': # Update expert trajectories expert_traj['obs'].extend(np.array(states[:-1])) expert_traj['obs_n'].extend(np.array(states[1:])) expert_traj['acts'].extend(np.array(actions)) episode += 1 else: if with_policy: if episode > num_episode - 1: y = input( 'Do you want to save this demonstration as validation? [y/n] ' ) else: y = 'n' else: y = input( 'Do you want to save this demonstration as validation? [y/n] ' ) if y == 'y': val_traj['obs'].extend(np.array(states[:-1])) val_traj['obs_n'].extend(np.array(states[1:])) val_traj['acts'].extend(np.array(actions)) episode += 1 y = None if num_episode is None: while y != 'y' and y != 'n': if not inference: y = input( 'Do you want to create another demonstration? [y/n] ' ) else: y = input('Do you want to try another episode? [y/n] ') if y == 'n': end = True else: if episode >= num_episode + 1: end = True if len(val_traj['obs']) <= 0: val_traj = None # Save demonstrations to file if save_demonstrations and not inference: print('Saving the demonstrations...') self.save_demonstrations(expert_traj, val_traj) print('Demonstrations saved!') if not inference: self.set_demonstrations(expert_traj, val_traj) return expert_traj, val_traj # Save demonstrations dict to file @staticmethod def save_demonstrations(demonstrations, validations=None, name='dems_potions.pkl'): with open('reward_model/dems/' + name, 'wb') as f: pickle.dump(demonstrations, f, pickle.HIGHEST_PROTOCOL) if validations is not None: with open('reward_model/dems/vals.pkl', 'wb') as f: pickle.dump(validations, f, pickle.HIGHEST_PROTOCOL) # Load demonstrations from file def load_demonstrations(self, name='dems.pkl'): with open('reward_model/dems/' + name, 'rb') as f: expert_traj = pickle.load(f) with open('reward_model/dems/vals.pkl', 'rb') as f: val_traj = pickle.load(f) self.set_demonstrations(expert_traj, val_traj) return expert_traj, val_traj # Save the entire model def save_model(self, name=None): self.saver.save(self.sess, 'reward_model/models/{}'.format(name)) return # Load entire model def load_model(self, name=None): self.saver = tf.compat.v1.train.import_meta_graph( 'reward_model/models/' + name + '.meta') self.saver.restore(self.sess, 'reward_model/models/' + name) return