Пример #1
0
        return all_words


if __name__ == "__main__":
    board = Boggle()
    s = Solver()

    N = 300
    t0 = perf_counter()
    ts = []

    for i in range(N):
        s.solve(board.gen())
        ts.append(perf_counter() - t0)
        t0 = perf_counter()

    print(f"Time to solve: {sum(ts)/len(ts)*1000:.1f}ms")

    # SOLVE BEST - EXPECTED ANSWER - 2945
    t0 = perf_counter()
    sol = s.solve(["EASAN", "BLRME", "AUIEE", "STSNS", "NURIG"])
    print(sum(len(w) - 3 for w in sol),
          f"[{(perf_counter()-t0) * 1000:.1f}ms]")
    by_length = {}
    for w in sol:
        by_length[len(w)] = by_length.get(len(w), []) + [w]
    print(", ".join([f"{i}: {len(v)}" for i, v in by_length.items()]))
    print(by_length[11])

    print(timer.report(nits=N, make_dict=1))
Пример #2
0
def render_data_ui(sql, metrics, show_back_to_all=False):
    timer = Timer()

    assert len(metrics) > 0, 'No metrics specified to render!'

    time_range = request.args.get('range')
    if not time_range:
        time_range = config.default_timerange

    timer.reset('STARTING...')
    db_name = os.getenv('RUUVI_DB', default='sqlite:///measurements-mock.db')
    logging.debug('Using database %s' % db_name)
    db = dataset.connect(db_name)
    # inject date filter into SQL query
    sql = sql.replace('[date_filter]', sql_date_filter(time_range))
    all_data = pd.read_sql(sql, con=db.engine)
    # make sure returned data is consistent with specified metrics
    assert all(metric in all_data.columns for metric in metrics), \
        'The data returned is not consistent with the specified metrics. ' \
        + 'Metrics: {metrics}. Data columns: {columns}'.format(metrics=metrics, columns=list(all_data.columns))
    timer.report('query db into dataframe')

    # get names of ALL sensors to allow for consistent coloring, regardless of the sensors currently displayed
    all_sensors = [
        r['sensor_name'] for r in db.query(
            "SELECT DISTINCT sensor_name FROM measurements ORDER BY sensor_name"
        )
    ]
    sensor_colors = {
        sensor: color
        for sensor, color in zip(all_sensors,
                                 n_pretty_hex_colors(len(all_sensors)))
    }

    data_per_metric = {
        metric: all_data.pivot_table(index='t',
                                     columns='sensor_name',
                                     values=metric)
        for metric in metrics
    }

    # Names of the sensors currently displayed.
    current_sensors = data_per_metric[metrics[0]].columns

    # determine whether to aggregate data to a day level
    aggregate_to_day_level = data_per_metric[
        metrics[0]].shape[0] > config.aggregate_daily_row_threshold

    # latest single data point for each metric
    latest_data = []
    for sensor in current_sensors:
        record = {'sensor_name': sensor, 'color': sensor_colors[sensor]}
        record.update({
            metric: data_per_metric[metric][sensor].iloc[-1]
            for metric in metrics
        })
        latest_data.append(record)

    # history for each metric, CSV formatted to inject into dygraph
    def csv_data_for_metric(metric):
        if aggregate_to_day_level:
            return dataframe_for_dygraph(to_day_level(data_per_metric[metric]))
        else:
            return dataframe_for_dygraph(data_per_metric[metric])

    graph_data = [{
        'metric': metric,
        'csv': csv_data_for_metric(metric)
    } for metric in metrics]

    # graph options per series are different when data is aggregated on a day level - then we need to
    # differentiate the min and max series visually
    if aggregate_to_day_level:
        series_options = {}
        for sensor_name in current_sensors:
            series_options.update(
                {'max ' + sensor_name: {
                    'color': sensor_colors[sensor_name]
                }})
            series_options.update({
                'min ' + sensor_name: {
                    'color': sensor_colors[sensor_name],
                    'strokePattern': [3, 3]
                }
            })
    else:
        series_options = {
            sensor_name: {
                'color': sensor_colors[sensor_name]
            }
            for sensor_name in current_sensors
        }
    timer.report('data transformation')

    rendered = render_template('ui_main.html',
                               metrics=metrics,
                               latest_data=latest_data,
                               graph_data=graph_data,
                               metric_units={
                                   'temperature': '°',
                                   'pressure': ' hPa',
                                   'humidity': '%'
                               },
                               metric_icons={
                                   'temperature': 'thermometer',
                                   'pressure': 'weather-lightning-rainy',
                                   'humidity': 'water'
                               },
                               ui_width=480,
                               show_back_to_all=show_back_to_all,
                               time_range=time_range,
                               series_options=series_options)
    timer.report('template rendered')

    return rendered