Пример #1
0
                       global_step=global_step)
            print('save a checkpoint at ' + opt.checkpoint_path + 'model-' +
                  str(it))
            print('start testing {} samples...'.format(test_samples))
            for ti in range(test_samples):
                x_batch, y_batch = next(test_generator)
                # tensorflow wants a different tensor order
                feed_dict = {img: x_batch, label: y_batch}
                loss, pred_logits = sess.run([log_loss, pred],
                                             feed_dict=feed_dict)
                pred_map_batch = np.argmax(pred_logits, axis=3)
                # import pdb; pdb.set_trace()
                for pred_map, y in zip(pred_map_batch, y_batch):
                    mean_iou, pixel_acc, dice = vis.add_sample(
                        pred_map, y_batch[0])
            vis.compute_scores(suffix=it)

        x_batch, y_batch = next(train_generator)
        # w_map = define_map(y_batch[0])
        # exclude whole-backgroud images
        feed_dict = {
            img: x_batch,
            label: y_batch
            # weight_map: w_map
        }
        _, loss, summary, lr, pred_logits = sess.run(
            [train_step, log_loss, summary_merged, learning_rate, pred],
            feed_dict=feed_dict)
        global_step.assign(it).eval()
        train_writer.add_summary(summary, it)
Пример #2
0
                      tf.train.latest_checkpoint(opt.load_from_checkpoint))
        print('--> load from checkpoint ' + opt.load_from_checkpoint)
    except Exception as ex:
        print('Unable to load checkpoint ...', ex)
        sys.exit(0)
    dice_score = 0
    for it in range(0, test_samples):
        x_batch, y_batch = next(test_generator)
        # tensorflow wants a different tensor order
        feed_dict = {img: x_batch, label: y_batch}
        loss, pred_logits = sess.run([cross_entropy_loss, pred],
                                     feed_dict=feed_dict)
        pred_map = np.argmax(pred_logits[0], axis=2)
        score = vis.add_sample(pred_map, y_batch[0])

        im, gt = deprocess(x_batch[0], dataset_mean, dataset_std, y_batch[0])

        # im = Image.fromarray(im)
        # im.save(os.path.join(opt.load_from_checkpoint, '{0:}.png'.format(it)))

        # gt = Image.fromarray(gt, 'L')
        # gt.save(os.path.join(opt.load_from_checkpoint, '{0:}_{1:.3f}.png'.format(it, score)))
        vis.save_seg(pred_map,
                     name='{0:}_{1:.3f}.png'.format(it, score),
                     im=im,
                     gt=gt)

        print('[iter %f]: loss=%f, meanIU=%f' % (it, loss, score))

    vis.compute_scores()