HDF5Datas = [] HDF5Labels = [] # Read reference image ReferenceName = args.reference[i] print '================================================================' print 'Processing image : ', ReferenceName # Read NIFTI ReferenceNifti = sitk.ReadImage(ReferenceName) # Get data from NIFTI ReferenceImage = np.swapaxes(sitk.GetArrayFromImage(ReferenceNifti), 0, 2).astype('float32') # Normalization ReferenceImage = imadjust3D(ReferenceImage, [0, 1]) # ===== Generate input LR image ===== # Blurring BlurReferenceImage = scipy.ndimage.filters.gaussian_filter( ReferenceImage, sigma=args.sigma) for scale in args.scale: print 'With respect to scale factor x', scale, ' : ' # Modcrop to scale factor BlurReferenceImage = modcrop3D(BlurReferenceImage, scale) ReferenceImage = modcrop3D(ReferenceImage, scale) # Downsampling LowResolutionImage = scipy.ndimage.zoom(
print '================================================================' print 'Processing (label) reference image : ', ReferenceName print 'Processing input image : ', InputName # Read NIFTI ReferenceNifti = sitk.ReadImage(ReferenceName) InputNifti = sitk.ReadImage(InputName) # Get data from NIFTI ReferenceImage = np.swapaxes(sitk.GetArrayFromImage(ReferenceNifti), 0, 2).astype('float32') InputImage = np.swapaxes(sitk.GetArrayFromImage(InputNifti), 0, 2).astype('float32') # Normalization ReferenceImage = imadjust3D(ReferenceImage, [0, 1]) InputImage = imadjust3D(InputImage, [0, 1]) # Compute scale factor: TargetShape = ReferenceImage.shape InputShape = InputImage.shape scale = (Targetidx / inputidx for Targetidx, inputidx in zip(TargetShape, InputShape)) print 'With respect to scale factor x', scale # Cubic Interpolation if TargetShape != InputShape: InputImage = scipy.ndimage.zoom(InputImage, zoom=scale, order=args.order)
print '================================================================' print 'Processing image : ', ReferenceName print 'Intermodality image : ', IntermodalityName # Read NIFTI ReferenceNifti = sitk.ReadImage(ReferenceName) IntermodalityNifti = sitk.ReadImage(IntermodalityName) # Get data from NIFTI ReferenceImage = np.swapaxes(sitk.GetArrayFromImage(ReferenceNifti), 0, 2).astype('float32') IntermodalityImage = np.swapaxes( sitk.GetArrayFromImage(IntermodalityNifti), 0, 2).astype('float32') # Normalization ReferenceImage = imadjust3D(ReferenceImage, [0, 1]) IntermodalityImage = imadjust3D(IntermodalityImage, [0, 1]) # ===== Generate input LR image ===== # Blurring BlurReferenceImage = scipy.ndimage.filters.gaussian_filter( ReferenceImage, sigma=args.sigma) for scale in args.scale: print 'With respect to scale factor x', scale, ' : ' # Modcrop to scale factor BlurReferenceImage = modcrop3D(BlurReferenceImage, scale) ReferenceImage = modcrop3D(ReferenceImage, scale) # Downsampling