# Read reference image
        ReferenceName = args.reference[i]
        print '================================================================'
        print 'Processing image : ', ReferenceName
        # Read NIFTI
        ReferenceNifti = sitk.ReadImage(ReferenceName)
        
        # Get data from NIFTI
        ReferenceImage = np.swapaxes(sitk.GetArrayFromImage(ReferenceNifti),0,2).astype('float32')
        
        # Get resolution to scaling factor
        UpScale = tuple(itemb/itema for itema,itemb in zip(ReferenceNifti.GetSpacing(),NewResolution))

        # Modcrop to scale factor
        ReferenceImage = modcrop3D(ReferenceImage,UpScale)

        # ===== Generate input LR image =====
        # Blurring
        BlurReferenceImage = scipy.ndimage.filters.gaussian_filter(ReferenceImage,
                                                            sigma = SigmaBlur)
                                                            
        print 'Generating LR images with the resolution of ', NewResolution
        
        # Downsampling
        LowResolutionImage = scipy.ndimage.zoom(BlurReferenceImage,
                                  zoom = (1/float(idxScale) for idxScale in UpScale),
                                  order = 0)  
        
        # Normalization by the max valeur of LR image
        MaxValue = np.max(LowResolutionImage)
Пример #2
0
        ReferenceImage = np.swapaxes(sitk.GetArrayFromImage(ReferenceNifti), 0,
                                     2).astype('float32')

        # Normalization
        ReferenceImage = imadjust3D(ReferenceImage, [0, 1])

        # ===== Generate input LR image =====
        # Blurring
        BlurReferenceImage = scipy.ndimage.filters.gaussian_filter(
            ReferenceImage, sigma=args.sigma)

        for scale in args.scale:
            print 'With respect to scale factor x', scale, ' : '

            # Modcrop to scale factor
            BlurReferenceImage = modcrop3D(BlurReferenceImage, scale)
            ReferenceImage = modcrop3D(ReferenceImage, scale)

            # Downsampling
            LowResolutionImage = scipy.ndimage.zoom(
                BlurReferenceImage,
                zoom=(1 / float(idxScale) for idxScale in scale),
                order=args.order)

            # Cubic Interpolation
            InterpolatedImage = scipy.ndimage.zoom(LowResolutionImage,
                                                   zoom=scale,
                                                   order=args.order)

            # Shave border
            LabelImage = shave3D(ReferenceImage, border)