def orient_and_calculate_scores_cuda(tensor_g, tensor_e, mbr16):
    # scores = torch.zeros((tensor_g.shape[0], tensor_e.shape[0])).cuda() - 1000000
    B_main, C, D, H, W = tensor_g.shape
    if hyp.pool_size > 2500:
        mB = B_main // 180
    else:
        mB = B_main // 18

    if mB == 0:
        mB = B_main
    num_seq = range(0, B_main, mB)
    all_scores = []
    # st()
    tensor_g = tensor_g.cuda()
    for i in num_seq:
        print(i)
        tensor_e_mb = tensor_e[i:i + mB].cuda()
        rotated_tensor_e = mbr16.rotateTensor(tensor_e_mb)
        B, A, C, D, H, W = rotated_tensor_e.shape
        # st()
        # assert  mB == B
        vec_e = rotated_tensor_e.reshape(B * A, -1)
        vec_g = tensor_g.reshape(B_main, -1)
        vec_e = utils_basic.l2_normalize(vec_e)
        vec_g = utils_basic.l2_normalize(vec_g)
        scores = torch.matmul(vec_g, vec_e.t())
        scores = torch.max(scores.reshape([B_main, B, A]), dim=-1).values
        all_scores.append(scores)
    all_scores = torch.cat(all_scores, dim=-1)
    # st()
    return all_scores
def orient_and_calculate_scores_cuda_temp2(tensor_g, tensor_e, mbr16):
    # scores = torch.zeros((tensor_g.shape[0], tensor_e.shape[0])).cuda() - 1000000
    # B,C, D, H, W = tensor_g.shape
    rotated_tensor_e = mbr16.rotateTensor(tensor_e)
    B, A, C, D, H, W = rotated_tensor_e.shape
    vec_e = rotated_tensor_e.reshape(B * A, -1)
    vec_g = tensor_g.reshape(B, -1)
    vec_e = utils_basic.l2_normalize(vec_e)
    vec_g = utils_basic.l2_normalize(vec_g)
    scores = torch.matmul(vec_g, vec_e.t())
    scores = torch.max(scores.reshape([B, B, A]), dim=-1).values
    # st()
    return scores
Пример #3
0
    def generate_flow(self, feat0, feat1, sc):
        B, C, D, H, W = list(feat0.shape)
        utils_basic.assert_same_shape(feat0, feat1)

        if self.debug:
            print('scale = %.2f' % sc)
            print('inputs:')
            print(feat0.shape)
            print(feat1.shape)

        if not sc == 1.0:
            # assert(sc==0.5 or sc==0.25) # please only use 0.25, 0.5, or 1.0 right now
            feat0 = F.interpolate(feat0,
                                  scale_factor=sc,
                                  mode='trilinear',
                                  align_corners=False)
            feat1 = F.interpolate(feat1,
                                  scale_factor=sc,
                                  mode='trilinear',
                                  align_corners=False)
            D, H, W = int(D * sc), int(H * sc), int(W * sc)
            if self.debug:
                print('downsamps:')
                print(feat0.shape)
                print(feat1.shape)

        feat0 = feat0.contiguous()
        feat1 = feat1.contiguous()

        cc = self.correlation_sampler(feat0, feat1)
        if self.debug:
            print('cc:')
            print(cc.shape)
        cc = cc.view(B, self.heatmap_size**3, D, H, W)

        cc = F.relu(cc)  # relu works better than leaky relu here
        if self.debug:
            print(cc.shape)
        cc = utils_basic.l2_normalize(cc, dim=1)

        flow = self.flow_predictor(cc)
        if self.debug:
            print('flow:')
            print(flow.shape)

        if not sc == 1.0:
            # note 1px here means 1px/sc at the real scale
            # first let's put the pixels in the right places
            flow = F.interpolate(flow,
                                 scale_factor=(1. / sc),
                                 mode='trilinear',
                                 align_corners=False)
            # now let's correct the scale
            flow = flow / sc

        if self.debug:
            print('flow up:')
            print(flow.shape)

        return flow
Пример #4
0
    def forward(self, rgb, summ_writer=None):
        total_loss = torch.tensor(0.0).cuda()
        B, C, H, W = list(rgb.shape)

        if summ_writer is not None:
            summ_writer.summ_rgb('feat2D/rgb', rgb)

        feat = self.net(rgb)

        # smooth loss
        dy, dx = utils_basic.gradient2D(feat, absolute=True)
        smooth_im = torch.mean(dy + dx, dim=1, keepdims=True)
        if summ_writer is not None:
            summ_writer.summ_oned('feat2D/smooth_loss', smooth_im)
        smooth_loss = torch.mean(smooth_im)
        total_loss = utils_misc.add_loss('feat2D/smooth_loss', total_loss,
                                         smooth_loss, hyp.feat2D_smooth_coeff,
                                         summ_writer)

        feat = utils_basic.l2_normalize(feat, dim=1)

        if summ_writer is not None:
            summ_writer.summ_feat('feat2D/feat_output', feat, pca=True)

        return total_loss, feat
def orient_and_calculate_scores_cuda_temp(tensor_g, tensor_e):
    assert tensor_g.shape == tensor_e.shape, "Both tensors shape should match exactly"
    tensor_g = tensor_g.unsqueeze(1)
    tensor_e = tensor_e.unsqueeze(1)
    B, S, C, D, H, W = tensor_g.shape
    vec_g = tensor_g.reshape(B * S, -1)
    gammas = torch.arange(0, 360, 10)
    tensor_g_vec = tensor_g.reshape(-1)
    scores = torch.zeros(
        (tensor_g.shape[0], tensor_e.shape[0])).cuda() - 1000000
    for gamma in gammas:
        rotated_tensor_e = rotate_tensor_along_y_axis(tensor_e, gamma)
        vec_e = rotated_tensor_e.reshape(B * S, -1)
        vec_e = utils_basic.l2_normalize(vec_e)
        vec_g = utils_basic.l2_normalize(vec_g)
        scores_gamma = torch.matmul(vec_g, vec_e.t())
        scores = torch.max(scores, scores_gamma)
    return scores
 def summ_diff_tensor(self, name, feat_diff, reduce_axes=[3]):
     if self.save_this:
         feat_diff = torch.abs(feat_diff)
         feat_diff = torch.sum(feat_diff, dim=1).unsqueeze(1)
         feat_diff = utils_basic.l2_normalize(feat_diff)
         # st()
         B, C, D, H, W = list(feat_diff.shape)
         for reduce_axis in reduce_axes:
             height = convert_occ_to_height(feat_diff,
                                            reduce_axis=reduce_axis)
             self.summ_oned(name=('%s_ax%d' % (name, reduce_axis)),
                            im=height,
                            norm=False)
Пример #7
0
    def forward(self, feat, summ_writer=None):
        total_loss = torch.tensor(0.0).cuda()
        B, C, Z, Y, X = list(feat.shape)

        mask = (feat[:,0:1] > 0.0).float()
        # if summ_writer is not None:
        #     summ_writer.summ_feat('feat3D/feat_mask', mask, pca=False)
        
        if summ_writer is not None:
            summ_writer.summ_feat('feat3D/feat_input', feat, pca=(C>3))

        feat = self.net(feat)
        mask = torch.ones_like(feat[:,0:1])

        # smooth loss
        dz, dy, dx = utils_basic.gradient3D(feat, absolute=True)
        smooth_vox = torch.mean(dz+dy+dx, dim=1, keepdims=True)
        if summ_writer is not None:
            summ_writer.summ_oned('feat3D/smooth_loss', torch.mean(smooth_vox, dim=3))
        smooth_loss = torch.mean(smooth_vox)
        total_loss = utils_misc.add_loss('feat3D/smooth_loss', total_loss, smooth_loss, hyp.feat3D_smooth_coeff, summ_writer)
            
        feat = utils_basic.l2_normalize(feat, dim=1)
        if hyp.feat3D_sparse:
            feat = feat * mask
        
        if summ_writer is not None:
            summ_writer.summ_feat('feat3D/feat_output', feat, pca=True)
            # summ_writer.summ_feat('feat3D/feat_mask', mask, pca=False)
            
        # if hyp.feat3D_skip:
        #     feat = feat[:,:,
        #                 self.crop[0]:-self.crop[0],
        #                 self.crop[1]:-self.crop[1],
        #                 self.crop[2]:-self.crop[2]]
        #     mask = mask[:,:,
        #                 self.crop[0]:-self.crop[0],
        #                 self.crop[1]:-self.crop[1],
        #                 self.crop[2]:-self.crop[2]]
            
        return total_loss, feat, mask
Пример #8
0
    def forward(self,
                pix_T_cam0,
                cam0_T_cam1,
                feat_mem1,
                rgb_g,
                vox_util,
                valid=None,
                summ_writer=None,
                test=False,
                suffix=''):
        total_loss = torch.tensor(0.0).cuda()

        B, C, H, W = list(rgb_g.shape)

        PH, PW = hyp.PH, hyp.PW
        if (PH < H) or (PW < W):
            # print('H, W', H, W)
            # print('PH, PW', PH, PW)
            sy = float(PH) / float(H)
            sx = float(PW) / float(W)
            pix_T_cam0 = utils_geom.scale_intrinsics(pix_T_cam0, sx, sy)

            if valid is not None:
                valid = F.interpolate(valid, scale_factor=0.5, mode='nearest')
            rgb_g = F.interpolate(rgb_g, scale_factor=0.5, mode='bilinear')

        # feat_prep = self.prep_layer(feat_mem1)
        # feat_proj = utils_vox.apply_pixX_T_memR_to_voxR(
        #     pix_T_cam0, cam0_T_cam1, feat_prep,
        #     hyp.view_depth, PH, PW)
        feat_proj = vox_util.apply_pixX_T_memR_to_voxR(pix_T_cam0, cam0_T_cam1,
                                                       feat_mem1,
                                                       hyp.view_depth, PH, PW)
        # logspace_slices=(hyp.dataset_name=='carla'))

        # def flatten_depth(feat_3d):
        #     B, C, Z, Y, X = list(feat_3d.shape)
        #     feat_2d = feat_3d.view(B, C*Z, Y, X)
        #     return feat_2d

        # feat_pool = self.pool_layer(feat_proj)
        # feat_im = flatten_depth(feat_pool)
        # rgb_e = self.decoder(feat_im)

        feat = self.net(feat_proj)
        rgb = self.rgb_layer(feat)
        emb = self.emb_layer(feat)
        emb = utils_basic.l2_normalize(emb, dim=1)

        # feat_im = self.net(feat_proj)
        # if hyp.do_emb2D:
        #     emb_e = self.emb_layer(feat)
        #     # postproc
        #     emb_e = l2_normalize(emb_e, dim=1)
        # else:
        #     emb_e = None

        if test:
            return None, rgb, None

        # loss_im = torch.mean(F.mse_loss(rgb, rgb_g, reduction='none'), dim=1, keepdim=True)
        loss_im = utils_basic.l1_on_axis(rgb - rgb_g, 1, keepdim=True)
        if valid is not None:
            rgb_loss = utils_basic.reduce_masked_mean(loss_im, valid)
        else:
            rgb_loss = torch.mean(loss_im)

        total_loss = utils_misc.add_loss('view/rgb_l1_loss', total_loss,
                                         rgb_loss, hyp.view_l1_coeff,
                                         summ_writer)

        # smooth loss
        dy, dx = utils_basic.gradient2D(rgb, absolute=True)
        smooth_im = torch.mean(dy + dx, dim=1, keepdims=True)
        if summ_writer is not None:
            summ_writer.summ_oned('view/smooth_loss', smooth_im)
        smooth_loss = torch.mean(smooth_im)
        total_loss = utils_misc.add_loss('view/smooth_loss', total_loss,
                                         smooth_loss, hyp.view_smooth_coeff,
                                         summ_writer)

        # vis
        if summ_writer is not None:
            summ_writer.summ_oned('view/rgb_loss', loss_im)
            summ_writer.summ_rgbs('view/rgb', [rgb.clamp(-0.5, 0.5), rgb_g])
            summ_writer.summ_rgb('view/rgb_e', rgb.clamp(-0.5, 0.5))
            summ_writer.summ_rgb('view/rgb_g', rgb_g.clamp(-0.5, 0.5))
            summ_writer.summ_feat('view/emb', emb, pca=True)
            if valid is not None:
                summ_writer.summ_rgb('view/rgb_e_valid',
                                     valid * rgb.clamp(-0.5, 0.5))
                summ_writer.summ_rgb('view/rgb_g_valid',
                                     valid * rgb_g.clamp(-0.5, 0.5))

        return total_loss, rgb, emb
Пример #9
0
    def forward(self, feed):
        results = dict()

        if 'log_freq' not in feed.keys():
            feed['log_freq'] = None
        start_time = time.time()

        summ_writer = utils_improc.Summ_writer(writer=feed['writer'],
                                               global_step=feed['global_step'],
                                               set_name=feed['set_name'],
                                               log_freq=feed['log_freq'],
                                               fps=8)
        writer = feed['writer']
        global_step = feed['global_step']

        total_loss = torch.tensor(0.0).cuda()
        __p = lambda x: utils_basic.pack_seqdim(x, B)
        __u = lambda x: utils_basic.unpack_seqdim(x, B)

        __pb = lambda x: utils_basic.pack_boxdim(x, hyp.N)
        __ub = lambda x: utils_basic.unpack_boxdim(x, hyp.N)
        if hyp.aug_object_ent_dis:
            __pb_a = lambda x: utils_basic.pack_boxdim(
                x, hyp.max_obj_aug + hyp.max_obj_aug_dis)
            __ub_a = lambda x: utils_basic.unpack_boxdim(
                x, hyp.max_obj_aug + hyp.max_obj_aug_dis)
        else:
            __pb_a = lambda x: utils_basic.pack_boxdim(x, hyp.max_obj_aug)
            __ub_a = lambda x: utils_basic.unpack_boxdim(x, hyp.max_obj_aug)

        B, H, W, V, S, N = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S, hyp.N
        PH, PW = hyp.PH, hyp.PW
        K = hyp.K
        BOX_SIZE = hyp.BOX_SIZE
        Z, Y, X = hyp.Z, hyp.Y, hyp.X
        Z2, Y2, X2 = int(Z / 2), int(Y / 2), int(X / 2)
        Z4, Y4, X4 = int(Z / 4), int(Y / 4), int(X / 4)
        D = 9

        tids = torch.from_numpy(np.reshape(np.arange(B * N), [B, N]))

        rgb_camXs = feed["rgb_camXs_raw"]
        pix_T_cams = feed["pix_T_cams_raw"]
        camRs_T_origin = feed["camR_T_origin_raw"]
        origin_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_origin)))
        origin_T_camXs = feed["origin_T_camXs_raw"]
        camX0_T_camXs = utils_geom.get_camM_T_camXs(origin_T_camXs, ind=0)
        camRs_T_camXs = __u(
            torch.matmul(utils_geom.safe_inverse(__p(origin_T_camRs)),
                         __p(origin_T_camXs)))
        camXs_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_camXs)))
        camX0_T_camRs = camXs_T_camRs[:, 0]
        camX1_T_camRs = camXs_T_camRs[:, 1]

        camR_T_camX0 = utils_geom.safe_inverse(camX0_T_camRs)

        xyz_camXs = feed["xyz_camXs_raw"]
        depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(
            __p(pix_T_cams), __p(xyz_camXs), H, W)
        dense_xyz_camXs_ = utils_geom.depth2pointcloud(depth_camXs_,
                                                       __p(pix_T_cams))

        xyz_camRs = __u(
            utils_geom.apply_4x4(__p(camRs_T_camXs), __p(xyz_camXs)))
        xyz_camX0s = __u(
            utils_geom.apply_4x4(__p(camX0_T_camXs), __p(xyz_camXs)))

        occXs = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z, Y, X))

        occXs_to_Rs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, occXs)
        occXs_to_Rs_45 = cross_corr.rotate_tensor_along_y_axis(occXs_to_Rs, 45)
        occXs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z2, Y2, X2))
        occRs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z2, Y2, X2))
        occX0s_half = __u(utils_vox.voxelize_xyz(__p(xyz_camX0s), Z2, Y2, X2))

        unpXs = __u(
            utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X,
                                           __p(pix_T_cams)))

        unpXs_half = __u(
            utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z2, Y2, X2,
                                           __p(pix_T_cams)))

        unpX0s_half = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z2, Y2, X2,
                utils_basic.matmul2(
                    __p(pix_T_cams),
                    utils_geom.safe_inverse(__p(camX0_T_camXs)))))

        unpRs = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z, Y, X,
                utils_basic.matmul2(
                    __p(pix_T_cams),
                    utils_geom.safe_inverse(__p(camRs_T_camXs)))))

        unpRs_half = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z2, Y2, X2,
                utils_basic.matmul2(
                    __p(pix_T_cams),
                    utils_geom.safe_inverse(__p(camRs_T_camXs)))))

        dense_xyz_camRs_ = utils_geom.apply_4x4(__p(camRs_T_camXs),
                                                dense_xyz_camXs_)
        inbound_camXs_ = utils_vox.get_inbounds(dense_xyz_camRs_, Z, Y,
                                                X).float()
        inbound_camXs_ = torch.reshape(inbound_camXs_, [B * S, 1, H, W])

        depth_camXs = __u(depth_camXs_)
        valid_camXs = __u(valid_camXs_) * __u(inbound_camXs_)

        summ_writer.summ_oneds('2D_inputs/depth_camXs',
                               torch.unbind(depth_camXs, dim=1),
                               maxdepth=21.0)
        summ_writer.summ_oneds('2D_inputs/valid_camXs',
                               torch.unbind(valid_camXs, dim=1))
        summ_writer.summ_rgbs('2D_inputs/rgb_camXs',
                              torch.unbind(rgb_camXs, dim=1))
        summ_writer.summ_occs('3D_inputs/occXs', torch.unbind(occXs, dim=1))
        summ_writer.summ_unps('3D_inputs/unpXs', torch.unbind(unpXs, dim=1),
                              torch.unbind(occXs, dim=1))

        occRs = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z, Y, X))

        if hyp.do_eval_boxes:
            if hyp.dataset_name == "clevr_vqa":
                gt_boxes_origin_corners = feed['gt_box']
                gt_scores_origin = feed['gt_scores'].detach().cpu().numpy()
                classes = feed['classes']
                scores = gt_scores_origin
                tree_seq_filename = feed['tree_seq_filename']
                gt_boxes_origin = nlu.get_ends_of_corner(
                    gt_boxes_origin_corners)
                gt_boxes_origin_end = torch.reshape(gt_boxes_origin,
                                                    [hyp.B, hyp.N, 2, 3])
                gt_boxes_origin_theta = nlu.get_alignedboxes2thetaformat(
                    gt_boxes_origin_end)
                gt_boxes_origin_corners = utils_geom.transform_boxes_to_corners(
                    gt_boxes_origin_theta)
                gt_boxesR_corners = __ub(
                    utils_geom.apply_4x4(camRs_T_origin[:, 0],
                                         __pb(gt_boxes_origin_corners)))
                gt_boxesR_theta = utils_geom.transform_corners_to_boxes(
                    gt_boxesR_corners)
                gt_boxesR_end = nlu.get_ends_of_corner(gt_boxesR_corners)

            else:
                tree_seq_filename = feed['tree_seq_filename']
                tree_filenames = [
                    join(hyp.root_dataset, i) for i in tree_seq_filename
                    if i != "invalid_tree"
                ]
                invalid_tree_filenames = [
                    join(hyp.root_dataset, i) for i in tree_seq_filename
                    if i == "invalid_tree"
                ]
                num_empty = len(invalid_tree_filenames)
                trees = [pickle.load(open(i, "rb")) for i in tree_filenames]

                len_valid = len(trees)
                if len_valid > 0:
                    gt_boxesR, scores, classes = nlu.trees_rearrange(trees)

                if num_empty > 0:
                    gt_boxesR = np.concatenate([
                        gt_boxesR, empty_gt_boxesR
                    ]) if len_valid > 0 else empty_gt_boxesR
                    scores = np.concatenate([
                        scores, empty_scores
                    ]) if len_valid > 0 else empty_scores
                    classes = np.concatenate([
                        classes, empty_classes
                    ]) if len_valid > 0 else empty_classes

                gt_boxesR = torch.from_numpy(
                    gt_boxesR).cuda().float()  # torch.Size([2, 3, 6])
                gt_boxesR_end = torch.reshape(gt_boxesR, [hyp.B, hyp.N, 2, 3])
                gt_boxesR_theta = nlu.get_alignedboxes2thetaformat(
                    gt_boxesR_end)  #torch.Size([2, 3, 9])
                gt_boxesR_corners = utils_geom.transform_boxes_to_corners(
                    gt_boxesR_theta)

            class_names_ex_1 = "_".join(classes[0])
            summ_writer.summ_text('eval_boxes/class_names', class_names_ex_1)

            gt_boxesRMem_corners = __ub(
                utils_vox.Ref2Mem(__pb(gt_boxesR_corners), Z2, Y2, X2))
            gt_boxesRMem_end = nlu.get_ends_of_corner(gt_boxesRMem_corners)

            gt_boxesRMem_theta = utils_geom.transform_corners_to_boxes(
                gt_boxesRMem_corners)
            gt_boxesRUnp_corners = __ub(
                utils_vox.Ref2Mem(__pb(gt_boxesR_corners), Z, Y, X))
            gt_boxesRUnp_end = nlu.get_ends_of_corner(gt_boxesRUnp_corners)

            gt_boxesX0_corners = __ub(
                utils_geom.apply_4x4(camX0_T_camRs, __pb(gt_boxesR_corners)))
            gt_boxesX0Mem_corners = __ub(
                utils_vox.Ref2Mem(__pb(gt_boxesX0_corners), Z2, Y2, X2))

            gt_boxesX0Mem_theta = utils_geom.transform_corners_to_boxes(
                gt_boxesX0Mem_corners)

            gt_boxesX0Mem_end = nlu.get_ends_of_corner(gt_boxesX0Mem_corners)
            gt_boxesX0_end = nlu.get_ends_of_corner(gt_boxesX0_corners)

            gt_cornersX0_pix = __ub(
                utils_geom.apply_pix_T_cam(pix_T_cams[:, 0],
                                           __pb(gt_boxesX0_corners)))

            rgb_camX0 = rgb_camXs[:, 0]
            rgb_camX1 = rgb_camXs[:, 1]

            summ_writer.summ_box_by_corners('eval_boxes/gt_boxescamX0',
                                            rgb_camX0, gt_boxesX0_corners,
                                            torch.from_numpy(scores), tids,
                                            pix_T_cams[:, 0])
            unps_vis = utils_improc.get_unps_vis(unpX0s_half, occX0s_half)
            unp_vis = torch.mean(unps_vis, dim=1)
            unps_visRs = utils_improc.get_unps_vis(unpRs_half, occRs_half)
            unp_visRs = torch.mean(unps_visRs, dim=1)
            unps_visRs_full = utils_improc.get_unps_vis(unpRs, occRs)
            unp_visRs_full = torch.mean(unps_visRs_full, dim=1)
            summ_writer.summ_box_mem_on_unp('eval_boxes/gt_boxesR_mem',
                                            unp_visRs, gt_boxesRMem_end,
                                            scores, tids)

            unpX0s_half = torch.mean(unpX0s_half, dim=1)
            unpX0s_half = nlu.zero_out(unpX0s_half, gt_boxesX0Mem_end, scores)

            occX0s_half = torch.mean(occX0s_half, dim=1)
            occX0s_half = nlu.zero_out(occX0s_half, gt_boxesX0Mem_end, scores)

            summ_writer.summ_unp('3D_inputs/unpX0s', unpX0s_half, occX0s_half)

        if hyp.do_feat:
            featXs_input = torch.cat([occXs, occXs * unpXs], dim=2)
            featXs_input_ = __p(featXs_input)

            freeXs_ = utils_vox.get_freespace(__p(xyz_camXs), __p(occXs_half))
            freeXs = __u(freeXs_)
            visXs = torch.clamp(occXs_half + freeXs, 0.0, 1.0)
            mask_ = None

            if (type(mask_) != type(None)):
                assert (list(mask_.shape)[2:5] == list(
                    featXs_input_.shape)[2:5])

            featXs_, feat_loss = self.featnet(featXs_input_,
                                              summ_writer,
                                              mask=__p(occXs))  #mask_)
            total_loss += feat_loss

            validXs = torch.ones_like(visXs)
            _validX00 = validXs[:, 0:1]
            _validX01 = utils_vox.apply_4x4s_to_voxs(camX0_T_camXs[:, 1:],
                                                     validXs[:, 1:])
            validX0s = torch.cat([_validX00, _validX01], dim=1)
            validRs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, validXs)
            visRs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, visXs)

            featXs = __u(featXs_)
            _featX00 = featXs[:, 0:1]
            _featX01 = utils_vox.apply_4x4s_to_voxs(camX0_T_camXs[:, 1:],
                                                    featXs[:, 1:])
            featX0s = torch.cat([_featX00, _featX01], dim=1)

            emb3D_e = torch.mean(featX0s[:, 1:], dim=1)
            vis3D_e_R = torch.max(visRs[:, 1:], dim=1)[0]
            emb3D_g = featX0s[:, 0]
            vis3D_g_R = visRs[:, 0]
            validR_combo = torch.min(validRs, dim=1).values

            summ_writer.summ_feats('3D_feats/featXs_input',
                                   torch.unbind(featXs_input, dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/featXs_output',
                                   torch.unbind(featXs, dim=1),
                                   valids=torch.unbind(validXs, dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/featX0s_output',
                                   torch.unbind(featX0s, dim=1),
                                   valids=torch.unbind(
                                       torch.ones_like(validRs), dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/validRs',
                                   torch.unbind(validRs, dim=1),
                                   pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_e_R', vis3D_e_R, pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_g_R', vis3D_g_R, pca=False)

        if hyp.do_munit:
            object_classes, filenames = nlu.create_object_classes(
                classes, [tree_seq_filename, tree_seq_filename], scores)
            if hyp.do_munit_fewshot:
                emb3D_e_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_e)
                emb3D_g_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_g)
                emb3D_R = emb3D_e_R
                emb3D_e_R_object, emb3D_g_R_object, validR_combo_object = nlu.create_object_tensors(
                    [emb3D_e_R, emb3D_g_R], [validR_combo], gt_boxesRMem_end,
                    scores, [BOX_SIZE, BOX_SIZE, BOX_SIZE])
                emb3D_R_object = (emb3D_e_R_object + emb3D_g_R_object) / 2
                content, style = self.munitnet.net.gen_a.encode(emb3D_R_object)
                objects_taken, _ = self.munitnet.net.gen_a.decode(
                    content, style)
                styles = style
                contents = content
            elif hyp.do_3d_style_munit:
                emb3D_e_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_e)
                emb3D_g_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_g)
                emb3D_R = emb3D_e_R
                # st()
                emb3D_e_R_object, emb3D_g_R_object, validR_combo_object = nlu.create_object_tensors(
                    [emb3D_e_R, emb3D_g_R], [validR_combo], gt_boxesRMem_end,
                    scores, [BOX_SIZE, BOX_SIZE, BOX_SIZE])
                emb3D_R_object = (emb3D_e_R_object + emb3D_g_R_object) / 2

                camX1_T_R = camXs_T_camRs[:, 1]
                camX0_T_R = camXs_T_camRs[:, 0]
                assert hyp.B == 2
                assert emb3D_e_R_object.shape[0] == 2
                munit_loss, sudo_input_0, sudo_input_1, recon_input_0, recon_input_1, sudo_input_0_cycle, sudo_input_1_cycle, styles, contents, adin = self.munitnet(
                    emb3D_R_object[0:1], emb3D_R_object[1:2])

                if hyp.store_content_style_range:
                    if self.max_content == None:
                        self.max_content = torch.zeros_like(
                            contents[0][0]).cuda() - 100000000
                    if self.min_content == None:
                        self.min_content = torch.zeros_like(
                            contents[0][0]).cuda() + 100000000
                    if self.max_style == None:
                        self.max_style = torch.zeros_like(
                            styles[0][0]).cuda() - 100000000
                    if self.min_style == None:
                        self.min_style = torch.zeros_like(
                            styles[0][0]).cuda() + 100000000
                    self.max_content = torch.max(
                        torch.max(self.max_content, contents[0][0]),
                        contents[1][0])
                    self.min_content = torch.min(
                        torch.min(self.min_content, contents[0][0]),
                        contents[1][0])
                    self.max_style = torch.max(
                        torch.max(self.max_style, styles[0][0]), styles[1][0])
                    self.min_style = torch.min(
                        torch.min(self.min_style, styles[0][0]), styles[1][0])

                    data_to_save = {
                        'max_content': self.max_content.cpu().numpy(),
                        'min_content': self.min_content.cpu().numpy(),
                        'max_style': self.max_style.cpu().numpy(),
                        'min_style': self.min_style.cpu().numpy()
                    }
                    with open('content_style_range.p', 'wb') as f:
                        pickle.dump(data_to_save, f)
                elif hyp.is_contrastive_examples:
                    if hyp.normalize_contrast:
                        content0 = (contents[0] - self.min_content) / (
                            self.max_content - self.min_content + 1e-5)
                        content1 = (contents[1] - self.min_content) / (
                            self.max_content - self.min_content + 1e-5)
                        style0 = (styles[0] - self.min_style) / (
                            self.max_style - self.min_style + 1e-5)
                        style1 = (styles[1] - self.min_style) / (
                            self.max_style - self.min_style + 1e-5)
                    else:
                        content0 = contents[0]
                        content1 = contents[1]
                        style0 = styles[0]
                        style1 = styles[1]

                    # euclid_dist_content = torch.sum(torch.sqrt((content0 - content1)**2))/torch.prod(torch.tensor(content0.shape))
                    # euclid_dist_style = torch.sum(torch.sqrt((style0-style1)**2))/torch.prod(torch.tensor(style0.shape))
                    euclid_dist_content = (content0 - content1).norm(2) / (
                        content0.numel())
                    euclid_dist_style = (style0 -
                                         style1).norm(2) / (style0.numel())

                    content_0_pooled = torch.mean(
                        content0.reshape(list(content0.shape[:2]) + [-1]),
                        dim=-1)
                    content_1_pooled = torch.mean(
                        content1.reshape(list(content1.shape[:2]) + [-1]),
                        dim=-1)

                    euclid_dist_content_pooled = (content_0_pooled -
                                                  content_1_pooled).norm(2) / (
                                                      content_0_pooled.numel())

                    content_0_normalized = content0 / content0.norm()
                    content_1_normalized = content1 / content1.norm()

                    style_0_normalized = style0 / style0.norm()
                    style_1_normalized = style1 / style1.norm()

                    content_0_pooled_normalized = content_0_pooled / content_0_pooled.norm(
                    )
                    content_1_pooled_normalized = content_1_pooled / content_1_pooled.norm(
                    )

                    cosine_dist_content = torch.sum(content_0_normalized *
                                                    content_1_normalized)
                    cosine_dist_style = torch.sum(style_0_normalized *
                                                  style_1_normalized)
                    cosine_dist_content_pooled = torch.sum(
                        content_0_pooled_normalized *
                        content_1_pooled_normalized)

                    print("euclid dist [content, pooled-content, style]: ",
                          euclid_dist_content, euclid_dist_content_pooled,
                          euclid_dist_style)
                    print("cosine sim [content, pooled-content, style]: ",
                          cosine_dist_content, cosine_dist_content_pooled,
                          cosine_dist_style)

            if hyp.run_few_shot_on_munit:
                if (global_step % 300) == 1 or (global_step % 300) == 0:
                    wrong = False
                    try:
                        precision_style = float(self.tp_style) / self.all_style
                        precision_content = float(
                            self.tp_content) / self.all_content
                    except ZeroDivisionError:
                        wrong = True

                    if not wrong:
                        summ_writer.summ_scalar(
                            'precision/unsupervised_precision_style',
                            precision_style)
                        summ_writer.summ_scalar(
                            'precision/unsupervised_precision_content',
                            precision_content)
                        # st()
                    self.embed_list_style = defaultdict(lambda: [])
                    self.embed_list_content = defaultdict(lambda: [])
                    self.tp_style = 0
                    self.all_style = 0
                    self.tp_content = 0
                    self.all_content = 0
                    self.check = False
                elif not self.check and not nlu.check_fill_dict(
                        self.embed_list_content, self.embed_list_style):
                    print("Filling \n")
                    for index, class_val in enumerate(object_classes):

                        if hyp.dataset_name == "clevr_vqa":
                            class_val_content, class_val_style = class_val.split(
                                "/")
                        else:
                            class_val_content, class_val_style = [
                                class_val.split("/")[0],
                                class_val.split("/")[0]
                            ]

                        print(len(self.embed_list_style.keys()), "style class",
                              len(self.embed_list_content), "content class",
                              self.embed_list_content.keys())
                        if len(self.embed_list_style[class_val_style]
                               ) < hyp.few_shot_nums:
                            self.embed_list_style[class_val_style].append(
                                styles[index].squeeze())
                        if len(self.embed_list_content[class_val_content]
                               ) < hyp.few_shot_nums:
                            if hyp.avg_3d:
                                content_val = contents[index]
                                content_val = torch.mean(content_val.reshape(
                                    [content_val.shape[1], -1]),
                                                         dim=-1)
                                # st()
                                self.embed_list_content[
                                    class_val_content].append(content_val)
                            else:
                                self.embed_list_content[
                                    class_val_content].append(
                                        contents[index].reshape([-1]))
                else:
                    self.check = True
                    try:
                        print(float(self.tp_content) / self.all_content)
                        print(float(self.tp_style) / self.all_style)
                    except Exception as e:
                        pass
                    average = True
                    if average:
                        for key, val in self.embed_list_style.items():
                            if isinstance(val, type([])):
                                self.embed_list_style[key] = torch.mean(
                                    torch.stack(val, dim=0), dim=0)

                        for key, val in self.embed_list_content.items():
                            if isinstance(val, type([])):
                                self.embed_list_content[key] = torch.mean(
                                    torch.stack(val, dim=0), dim=0)
                    else:
                        for key, val in self.embed_list_style.items():
                            if isinstance(val, type([])):
                                self.embed_list_style[key] = torch.stack(val,
                                                                         dim=0)

                        for key, val in self.embed_list_content.items():
                            if isinstance(val, type([])):
                                self.embed_list_content[key] = torch.stack(
                                    val, dim=0)
                    for index, class_val in enumerate(object_classes):
                        class_val = class_val
                        if hyp.dataset_name == "clevr_vqa":
                            class_val_content, class_val_style = class_val.split(
                                "/")
                        else:
                            class_val_content, class_val_style = [
                                class_val.split("/")[0],
                                class_val.split("/")[0]
                            ]

                        style_val = styles[index].squeeze().unsqueeze(0)
                        if not average:
                            embed_list_val_style = torch.cat(list(
                                self.embed_list_style.values()),
                                                             dim=0)
                            embed_list_key_style = list(
                                np.repeat(
                                    np.expand_dims(
                                        list(self.embed_list_style.keys()), 1),
                                    hyp.few_shot_nums, 1).reshape([-1]))
                        else:
                            embed_list_val_style = torch.stack(list(
                                self.embed_list_style.values()),
                                                               dim=0)
                            embed_list_key_style = list(
                                self.embed_list_style.keys())
                        embed_list_val_style = utils_basic.l2_normalize(
                            embed_list_val_style, dim=1).permute(1, 0)
                        style_val = utils_basic.l2_normalize(style_val, dim=1)
                        scores_styles = torch.matmul(style_val,
                                                     embed_list_val_style)
                        index_key = torch.argmax(scores_styles,
                                                 dim=1).squeeze()
                        selected_class_style = embed_list_key_style[index_key]
                        self.styles_prediction[class_val_style].append(
                            selected_class_style)
                        if class_val_style == selected_class_style:
                            self.tp_style += 1
                        self.all_style += 1

                        if hyp.avg_3d:
                            content_val = contents[index]
                            content_val = torch.mean(content_val.reshape(
                                [content_val.shape[1], -1]),
                                                     dim=-1).unsqueeze(0)
                        else:
                            content_val = contents[index].reshape(
                                [-1]).unsqueeze(0)
                        if not average:
                            embed_list_val_content = torch.cat(list(
                                self.embed_list_content.values()),
                                                               dim=0)
                            embed_list_key_content = list(
                                np.repeat(
                                    np.expand_dims(
                                        list(self.embed_list_content.keys()),
                                        1), hyp.few_shot_nums,
                                    1).reshape([-1]))
                        else:
                            embed_list_val_content = torch.stack(list(
                                self.embed_list_content.values()),
                                                                 dim=0)
                            embed_list_key_content = list(
                                self.embed_list_content.keys())
                        embed_list_val_content = utils_basic.l2_normalize(
                            embed_list_val_content, dim=1).permute(1, 0)
                        content_val = utils_basic.l2_normalize(content_val,
                                                               dim=1)
                        scores_content = torch.matmul(content_val,
                                                      embed_list_val_content)
                        index_key = torch.argmax(scores_content,
                                                 dim=1).squeeze()
                        selected_class_content = embed_list_key_content[
                            index_key]
                        self.content_prediction[class_val_content].append(
                            selected_class_content)
                        if class_val_content == selected_class_content:
                            self.tp_content += 1

                        self.all_content += 1
            # st()
            munit_loss = hyp.munit_loss_weight * munit_loss

            recon_input_obj = torch.cat([recon_input_0, recon_input_1], dim=0)
            recon_emb3D_R = nlu.update_scene_with_objects(
                emb3D_R, recon_input_obj, gt_boxesRMem_end, scores)

            sudo_input_obj = torch.cat([sudo_input_0, sudo_input_1], dim=0)
            styled_emb3D_R = nlu.update_scene_with_objects(
                emb3D_R, sudo_input_obj, gt_boxesRMem_end, scores)

            styled_emb3D_e_X1 = utils_vox.apply_4x4_to_vox(
                camX1_T_R, styled_emb3D_R)
            styled_emb3D_e_X0 = utils_vox.apply_4x4_to_vox(
                camX0_T_R, styled_emb3D_R)

            emb3D_e_X1 = utils_vox.apply_4x4_to_vox(camX1_T_R, recon_emb3D_R)
            emb3D_e_X0 = utils_vox.apply_4x4_to_vox(camX0_T_R, recon_emb3D_R)

            emb3D_e_X1_og = utils_vox.apply_4x4_to_vox(camX1_T_R, emb3D_R)
            emb3D_e_X0_og = utils_vox.apply_4x4_to_vox(camX0_T_R, emb3D_R)

            emb3D_R_aug_diff = torch.abs(emb3D_R - recon_emb3D_R)

            summ_writer.summ_feat(f'aug_feat/og', emb3D_R)
            summ_writer.summ_feat(f'aug_feat/og_gen', recon_emb3D_R)
            summ_writer.summ_feat(f'aug_feat/og_aug_diff', emb3D_R_aug_diff)

            if hyp.cycle_style_view_loss:
                sudo_input_obj_cycle = torch.cat(
                    [sudo_input_0_cycle, sudo_input_1_cycle], dim=0)
                styled_emb3D_R_cycle = nlu.update_scene_with_objects(
                    emb3D_R, sudo_input_obj_cycle, gt_boxesRMem_end, scores)

                styled_emb3D_e_X0_cycle = utils_vox.apply_4x4_to_vox(
                    camX0_T_R, styled_emb3D_R_cycle)
                styled_emb3D_e_X1_cycle = utils_vox.apply_4x4_to_vox(
                    camX1_T_R, styled_emb3D_R_cycle)
            summ_writer.summ_scalar('munit_loss', munit_loss.cpu().item())
            total_loss += munit_loss

        if hyp.do_occ and hyp.occ_do_cheap:
            occX0_sup, freeX0_sup, _, freeXs = utils_vox.prep_occs_supervision(
                camX0_T_camXs, xyz_camXs, Z2, Y2, X2, agg=True)

            summ_writer.summ_occ('occ_sup/occ_sup', occX0_sup)
            summ_writer.summ_occ('occ_sup/free_sup', freeX0_sup)
            summ_writer.summ_occs('occ_sup/freeXs_sup',
                                  torch.unbind(freeXs, dim=1))
            summ_writer.summ_occs('occ_sup/occXs_sup',
                                  torch.unbind(occXs_half, dim=1))

            occ_loss, occX0s_pred_ = self.occnet(
                torch.mean(featX0s[:, 1:], dim=1), occX0_sup, freeX0_sup,
                torch.max(validX0s[:, 1:], dim=1)[0], summ_writer)
            occX0s_pred = __u(occX0s_pred_)
            total_loss += occ_loss

        if hyp.do_view:
            assert (hyp.do_feat)
            PH, PW = hyp.PH, hyp.PW
            sy = float(PH) / float(hyp.H)
            sx = float(PW) / float(hyp.W)
            assert (sx == 0.5)  # else we need a fancier downsampler
            assert (sy == 0.5)
            projpix_T_cams = __u(
                utils_geom.scale_intrinsics(__p(pix_T_cams), sx, sy))
            # st()

            if hyp.do_munit:
                feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    emb3D_e_X1,  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)

                feat_projX00_og = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    emb3D_e_X1_og,  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)

                # only for checking the style
                styled_feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    styled_emb3D_e_X1,  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)

                if hyp.cycle_style_view_loss:
                    styled_feat_projX00_cycle = utils_vox.apply_pixX_T_memR_to_voxR(
                        projpix_T_cams[:, 0],
                        camX0_T_camXs[:, 1],
                        styled_emb3D_e_X1_cycle,  # use feat1 to predict rgb0
                        hyp.view_depth,
                        PH,
                        PW)

            else:
                feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    featXs[:, 1],  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)
            rgb_X00 = utils_basic.downsample(rgb_camXs[:, 0], 2)
            rgb_X01 = utils_basic.downsample(rgb_camXs[:, 1], 2)
            valid_X00 = utils_basic.downsample(valid_camXs[:, 0], 2)

            view_loss, rgb_e, emb2D_e = self.viewnet(feat_projX00, rgb_X00,
                                                     valid_X00, summ_writer,
                                                     "rgb")

            if hyp.do_munit:
                _, rgb_e, emb2D_e = self.viewnet(feat_projX00_og, rgb_X00,
                                                 valid_X00, summ_writer,
                                                 "rgb_og")
            if hyp.do_munit:
                styled_view_loss, styled_rgb_e, styled_emb2D_e = self.viewnet(
                    styled_feat_projX00, rgb_X00, valid_X00, summ_writer,
                    "recon_style")
                if hyp.cycle_style_view_loss:
                    styled_view_loss_cycle, styled_rgb_e_cycle, styled_emb2D_e_cycle = self.viewnet(
                        styled_feat_projX00_cycle, rgb_X00, valid_X00,
                        summ_writer, "recon_style_cycle")

                rgb_input_1 = torch.cat(
                    [rgb_X01[1], rgb_X01[0], styled_rgb_e[0]], dim=2)
                rgb_input_2 = torch.cat(
                    [rgb_X01[0], rgb_X01[1], styled_rgb_e[1]], dim=2)
                complete_vis = torch.cat([rgb_input_1, rgb_input_2], dim=1)
                summ_writer.summ_rgb('munit/munit_recons_vis',
                                     complete_vis.unsqueeze(0))

            if not hyp.do_munit:
                total_loss += view_loss
            else:
                if hyp.basic_view_loss:
                    total_loss += view_loss
                if hyp.style_view_loss:
                    total_loss += styled_view_loss
                if hyp.cycle_style_view_loss:
                    total_loss += styled_view_loss_cycle

        summ_writer.summ_scalar('loss', total_loss.cpu().item())

        if hyp.save_embed_tsne:
            for index, class_val in enumerate(object_classes):
                class_val_content, class_val_style = class_val.split("/")
                style_val = styles[index].squeeze().unsqueeze(0)
                self.cluster_pool.update(style_val, [class_val_style])
                print(self.cluster_pool.num)

            if self.cluster_pool.is_full():
                embeds, classes = self.cluster_pool.fetch()
                with open("offline_cluster" + '/%st.txt' % 'classes',
                          'w') as f:
                    for index, embed in enumerate(classes):
                        class_val = classes[index]
                        f.write("%s\n" % class_val)
                f.close()
                with open("offline_cluster" + '/%st.txt' % 'embeddings',
                          'w') as f:
                    for index, embed in enumerate(embeds):
                        # embed = utils_basic.l2_normalize(embed,dim=0)
                        print("writing {} embed".format(index))
                        embed_l_s = [str(i) for i in embed.tolist()]
                        embed_str = '\t'.join(embed_l_s)
                        f.write("%s\n" % embed_str)
                f.close()
                st()

        return total_loss, results