from PIL import Image as PILImage # Utilities from tqdm import tqdm import time import psutil from datetime import datetime # ================================================================================================================= # Custom packages user_dir = os.path.expanduser('~') script_dir = Path((__file__)).parents[0] project_dir = os.path.abspath(Path((__file__)).parents[1]) sys.path.append(project_dir) import utils_dir.utils as utils from utils_dir.utils import timeit, get_varargin, ProgressBar from utils_dir import logger_utils as logger_utils logger = logger_utils.htmlLogger(log_file = './{}_{}.html'\ .format(datetime.now().strftime('%y%m%d'), os.path.basename(__file__)), mode = 'w') logger.info('START -- project dir: {}'.format(project_dir)) # ================================================================================================================= # DEFINES (X_train, y_train), (X_test, y_test) = kerasDatasets.mnist.load_data() BUFFER_SIZE = 10000 BATCH_SIZE = 256 IMG_SIZE = (X_train.shape[1], X_train.shape[2]) TRAIN_SIZE = X_train.shape[0] NB_EPOCHS = 100 NB_BATCHS = int(TRAIN_SIZE/BATCH_SIZE) NB_CLASSES = 10 # ================================================================================================================= # Functions def load_dataset(X_train, y_train, X_test, y_test, **kwargs): # Load Data
import time from datetime import datetime import logging # ================================================================================================================= # Custom packages user_dir = os.path.expanduser('~') project_dir = os.path.join(user_dir, 'serviceBot') if not (project_dir in sys.path): print('sys.append: {}'.format(project_dir)) sys.path.append(project_dir) from utils_dir.utils import timeit, get_varargin, verbose import utils_dir.utils as utils from utils_dir import logger_utils as logger_utils from icons.iconClass import iconClass pyIcons = iconClass(icon_dir=os.path.join(project_dir, 'icons')) logger = logger_utils.htmlLogger(log_file = os.path.join(project_dir, '{}_GUIlogging.html'\ .format(datetime.now().strftime('%y%m%d'))), mode = 'w') logger.info('START -- project dir: {}'.format(project_dir)) # ================================================================================================================= # FUNCTIONS # Decorator def log_info(func): @functools.wraps(func) def inner(*args, **kwargs): logger.info('START: {}'.format(func.__name__)) try: result = func(*args, **kwargs) except Exception as e: logger.error(e) return None
import numpy as np import random from tqdm import tqdm # Visualization import matplotlib.pyplot as plt # Custom packages user_dir = os.path.expanduser('~') project_dir = os.path.join(user_dir, 'serviceBot') sys.path.append(project_dir) import utils_dir.utils as utils from utils_dir.utils import timeit, get_varargin, ProgressBar from utils_dir import logger_utils as logger_utils from model import resnet as resnet_utils import config.baseConfig as baseConfig logger = logger_utils.htmlLogger(log_file='./191214_gan_logging.html', mode='w') logger.info('START -- project dir: {}'.format(project_dir)) logger.nvidia_smi() # Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images. (X_train, Y_train), (X_test, Y_test) = kerasDatasets.mnist.load_data() # Preprocessing # X_train = X_train.reshape(60000, 784) # X_test = X_test.reshape(10000, 784) # X_train = X_train.astype('float32')/255 # X_test = X_test.astype('float32')/255 BUFFER_SIZE = 10000 BATCH_SIZE = 128 * 3 train_images = X_train train_images = train_images.reshape(train_images.shape[0], 28, 28,