Пример #1
0
def transform_demo(reg, demo, left=True, right=True, cloud_xyz=False, object_clouds=False, l_offset = None, r_offset = None):
    """
    reg: NonrigidRegistration object
    demo: array with the following fields: r_gripper_xyzs, l_gripper_xyzs, r_gripper_quats, l_gripper_quats, cloud_xyz
    
    (todo: replace 'cloud_xyz' with 'object_points')
    """
    warped_demo = group_to_dict(demo)
        
    if left:
        if l_offset is None:
            l_tool_xyzs = demo["l_gripper_tool_frame"]["position"]
        else:
            l_tool_xyzs = np.array([xyz + np.dot(rot[:3,:3], l_offset) for (xyz, rot) in zip(demo["l_gripper_tool_frame"]["position"], quats2mats(demo["l_gripper_tool_frame"]["orientation"]))])
        l_tool_xyzs_warped, rot_l_warped = reg.transform_frames(l_tool_xyzs, quats2mats(demo["l_gripper_tool_frame"]["orientation"]))
        l_gripper_quats_warped = mats2quats(rot_l_warped)
        if l_offset is None:
            l_gripper_xyzs_warped = l_tool_xyzs_warped
        else:
            l_gripper_xyzs_warped = np.array([xyz - np.dot(rot[:3,:3], l_offset) for (xyz, rot) in zip(l_tool_xyzs_warped, rot_l_warped)])
        
        warped_demo["l_gripper_tool_frame"]["position"] = l_gripper_xyzs_warped
        warped_demo["l_gripper_tool_frame"]["orientation"] = l_gripper_quats_warped

    if right:
        if r_offset is None:
            r_tool_xyzs = demo["r_gripper_tool_frame"]["position"]
        else:
            r_tool_xyzs = np.array([xyz + np.dot(rot[:3,:3], r_offset) for (xyz, rot) in zip(demo["r_gripper_tool_frame"]["position"], quats2mats(demo["r_gripper_tool_frame"]["orientation"]))])
        r_tool_xyzs_warped, rot_r_warped = reg.transform_frames(r_tool_xyzs, quats2mats(demo["r_gripper_tool_frame"]["orientation"]))
        r_gripper_quats_warped = mats2quats(rot_r_warped)
        if r_offset is None:
            r_gripper_xyzs_warped = r_tool_xyzs_warped
        else:
            r_gripper_xyzs_warped = np.array([xyz - np.dot(rot[:3,:3], r_offset) for (xyz, rot) in zip(r_tool_xyzs_warped, rot_r_warped)])
        warped_demo["r_gripper_tool_frame"]["position"] = r_gripper_xyzs_warped
        warped_demo["r_gripper_tool_frame"]["orientation"] = r_gripper_quats_warped
        
    if cloud_xyz:
        old_cloud_xyz_pts = np.asarray(demo["cloud_xyz"]).reshape(-1,3)
        new_cloud_xyz_pts = reg.transform_points(old_cloud_xyz_pts)
        warped_demo["cloud_xyz"] = new_cloud_xyz_pts.reshape(demo["cloud_xyz"].shape)
        
    if object_clouds:
        for key in sorted(demo["object_clouds"].keys()):            
            old_cloud_xyz_pts = np.asarray(demo["object_clouds"][key]["xyz"]).reshape(-1,3)
            new_cloud_xyz_pts = reg.transform_points(old_cloud_xyz_pts)
            warped_demo["object_clouds"][key]["xyz"] = new_cloud_xyz_pts
        
    return warped_demo
Пример #2
0
def transform_verb_demo(warp, demo,l_offset = None, r_offset = None):
    """
    demo: array with the following fields: r_gripper_xyzs, l_gripper_xyzs, r_gripper_quats, l_gripper_quats, cloud_xyz, possible object_clouds
    transform each field using warp
    l_offset and r_offset tell you where the tools are, so you can do tool stuff
    (note: this doesn't currently work when important point is moved relative to demo)
    
    """
    warped_demo = group_to_dict(demo) # deep copy it
        
    if demo["arms_used"] in "lb":
        if l_offset is None:
            l_tool_xyzs = demo["l_gripper_tool_frame"]["position"]
        else:
            l_tool_xyzs = np.array([xyz + np.dot(rot[:3,:3], l_offset) for (xyz, rot) in zip(demo["l_gripper_tool_frame"]["position"], quats2mats(demo["l_gripper_tool_frame"]["orientation"]))])
        l_tool_xyzs_warped, rot_l_warped = warp.transform_frames(l_tool_xyzs, quats2mats(demo["l_gripper_tool_frame"]["orientation"]))
        l_gripper_quats_warped = mats2quats(rot_l_warped)
        if l_offset is None:
            l_gripper_xyzs_warped = l_tool_xyzs_warped
        else:
            l_gripper_xyzs_warped = np.array([xyz - np.dot(rot[:3,:3], l_offset) for (xyz, rot) in zip(l_tool_xyzs_warped, rot_l_warped)])
        
        warped_demo["l_gripper_tool_frame"]["position"] = l_gripper_xyzs_warped
        warped_demo["l_gripper_tool_frame"]["orientation"] = l_gripper_quats_warped

    if demo["arms_used"] in "rb":
        if r_offset is None:
            r_tool_xyzs = demo["r_gripper_tool_frame"]["position"]
        else:
            r_tool_xyzs = np.array([xyz + np.dot(rot[:3,:3], r_offset) for (xyz, rot) in zip(demo["r_gripper_tool_frame"]["position"], quats2mats(demo["r_gripper_tool_frame"]["orientation"]))])
        r_tool_xyzs_warped, rot_r_warped = warp.transform_frames(r_tool_xyzs, quats2mats(demo["r_gripper_tool_frame"]["orientation"]))
        r_gripper_quats_warped = mats2quats(rot_r_warped)
        if r_offset is None:
            r_gripper_xyzs_warped = r_tool_xyzs_warped
        else:
            r_gripper_xyzs_warped = np.array([xyz - np.dot(rot[:3,:3], r_offset) for (xyz, rot) in zip(r_tool_xyzs_warped, rot_r_warped)])
        warped_demo["r_gripper_tool_frame"]["position"] = r_gripper_xyzs_warped
        warped_demo["r_gripper_tool_frame"]["orientation"] = r_gripper_quats_warped
        
    if "object_clouds" in demo:
        for key in sorted(demo["object_clouds"].keys()):            
            old_cloud_xyz_pts = np.asarray(demo["object_clouds"][key]["xyz"]).reshape(-1,3)
            new_cloud_xyz_pts = warp.transform_points(old_cloud_xyz_pts)
            warped_demo["object_clouds"][key]["xyz"] = new_cloud_xyz_pts
        
    return warped_demo
Пример #3
0
def get_demo_data(demo_name):
    h5file = h5py.File(h5path, "r")
    out = group_to_dict(h5file[demo_name])
    h5file.close()
    return out
Пример #4
0
def get_demo_data(demo_name):
    h5file = h5py.File(h5path, "r")
    out = group_to_dict(h5file[demo_name])
    h5file.close()
    return out
def make_traj_multi_stage_do_work(demo_name, exp_target_cloud, frame_id, stage_num, tool_stage_info, exp_tool_cloud, verb_data_accessor, world_to_grip_transform_func, transform_type):
    
    current_stage_info = verb_data_accessor.get_stage_info(demo_name, stage_num)
    arms_used = current_stage_info.arms_used

    # make sure this is the first stage (no tool) or only one arm is being used with a tool
    assert stage_num == 0 or (arms_used in ['r', 'l'])

    if stage_num == 0:
        tool_stage_data = None
        # don't do any extra transformation for the first stage
        demo_to_exp_tool_transform = None
        # no special point translation for first stage since no tool yet
        spec_pt_in_grip = np.zeros(3)
    else:
        tool_stage_data = verb_data_accessor.get_demo_stage_data(tool_stage_info.stage_name)
        # make sure that the tool stage only uses one arm (the one with the tool)
        demo_to_exp_tool_transform = get_demo_to_exp_tool_transform(verb_data_accessor, tool_stage_info,
                                                                    exp_tool_cloud, transform_type)
        spec_pt_in_grip = np.zeros(3) if tool_stage_info.special_point is None else tool_stage_info.special_point

    current_stage_data = verb_data_accessor.get_demo_stage_data(current_stage_info.stage_name)

    resp = MakeTrajectoryResponse()
    resp.traj.arms_used = arms_used

    # find the target transformation for the experiment scene
    demo_to_exp_target_transform = get_demo_to_exp_target_transform(current_stage_data["object_cloud"][current_stage_info.item]["xyz"],
                                                                    exp_target_cloud,
                                                                    transform_type)

    warped_stage_data = group_to_dict(current_stage_data) # deep copy it
    arms_used_list = ['r', 'l'] if arms_used == 'b' else [arms_used]
    for arm in arms_used_list:
        gripper_data_key = "%s_gripper_tool_frame" % (arm)
        
        # get the demo gripper trajectory
        demo_target_grip_traj_mats = get_demo_grip_traj_mats(current_stage_data, arm)

        # get the demo special point trajectory by applying the special point translation
        demo_spec_pt_traj_mats = get_demo_spec_pt_traj_mats(demo_target_grip_traj_mats, spec_pt_in_grip)

        # get the warped special point trajectory by applying the target warping transformation to the demo special point trajectory
        warped_spec_pt_traj_mats = get_warped_spec_pt_traj_mats(demo_spec_pt_traj_mats, demo_to_exp_target_transform)

        # get the warped trajectory for the gripper using the tool warping transformation
        warped_grip_traj_mats = get_warped_grip_traj_mats(warped_spec_pt_traj_mats, tool_stage_data,
                                                          demo_to_exp_tool_transform, spec_pt_in_grip,
                                                          world_to_grip_transform_func, arm)

        warped_transs, warped_rots = juc.hmats_to_transs_rots(warped_grip_traj_mats)
        warped_stage_data[gripper_data_key]["position"] = warped_transs
        warped_stage_data[gripper_data_key]["orientation"] = warped_rots

        set_traj_fields_for_response(warped_stage_data, resp, arm, frame_id)

        # save the demo special point traj for plotting
        demo_spec_pt_xyzs, exp_spec_pt_xyzs = [], []
        if stage_num > 0:
            demo_spec_pt_xyzs = juc.hmats_to_transs_rots(demo_spec_pt_traj_mats)[0]
            exp_spec_pt_xyzs = juc.hmats_to_transs_rots(warped_spec_pt_traj_mats)[0]

    del Globals.handles[:]

    # plot the demo and warped special points
    current_spec_pt = current_stage_info.special_point
    # currently, don't know which arm grabbed the tool if both arms were used in a stage
    if stage_num == 0 and current_spec_pt is not None and arms_used in ['l', 'r']:
        plot_demo_and_warped_tool_spec_pt(current_spec_pt, current_stage_data, demo_to_exp_target_transform, arms_used)

    # plot the gripper and special point trajectories (red is demo, green is warped)
    #plot_original_and_warped_demo_and_spec_pt(current_stage_data, warped_stage_data,
    #                                          demo_spec_pt_xyzs, exp_spec_pt_xyzs,
    #                                          arms_used)

    return resp
Пример #6
0
def transform_demo(reg,
                   demo,
                   left=True,
                   right=True,
                   cloud_xyz=False,
                   object_clouds=False,
                   l_offset=None,
                   r_offset=None):
    """
    reg: NonrigidRegistration object
    demo: array with the following fields: r_gripper_xyzs, l_gripper_xyzs, r_gripper_quats, l_gripper_quats, cloud_xyz
    
    (todo: replace 'cloud_xyz' with 'object_points')
    """
    warped_demo = group_to_dict(demo)

    if left:
        if l_offset is None:
            l_tool_xyzs = demo["l_gripper_tool_frame"]["position"]
        else:
            l_tool_xyzs = np.array([
                xyz + np.dot(rot[:3, :3], l_offset) for (xyz, rot) in zip(
                    demo["l_gripper_tool_frame"]["position"],
                    quats2mats(demo["l_gripper_tool_frame"]["orientation"]))
            ])
        l_tool_xyzs_warped, rot_l_warped = reg.transform_frames(
            l_tool_xyzs,
            quats2mats(demo["l_gripper_tool_frame"]["orientation"]))
        l_gripper_quats_warped = mats2quats(rot_l_warped)
        if l_offset is None:
            l_gripper_xyzs_warped = l_tool_xyzs_warped
        else:
            l_gripper_xyzs_warped = np.array([
                xyz - np.dot(rot[:3, :3], l_offset)
                for (xyz, rot) in zip(l_tool_xyzs_warped, rot_l_warped)
            ])

        warped_demo["l_gripper_tool_frame"]["position"] = l_gripper_xyzs_warped
        warped_demo["l_gripper_tool_frame"][
            "orientation"] = l_gripper_quats_warped

    if right:
        if r_offset is None:
            r_tool_xyzs = demo["r_gripper_tool_frame"]["position"]
        else:
            r_tool_xyzs = np.array([
                xyz + np.dot(rot[:3, :3], r_offset) for (xyz, rot) in zip(
                    demo["r_gripper_tool_frame"]["position"],
                    quats2mats(demo["r_gripper_tool_frame"]["orientation"]))
            ])
        r_tool_xyzs_warped, rot_r_warped = reg.transform_frames(
            r_tool_xyzs,
            quats2mats(demo["r_gripper_tool_frame"]["orientation"]))
        r_gripper_quats_warped = mats2quats(rot_r_warped)
        if r_offset is None:
            r_gripper_xyzs_warped = r_tool_xyzs_warped
        else:
            r_gripper_xyzs_warped = np.array([
                xyz - np.dot(rot[:3, :3], r_offset)
                for (xyz, rot) in zip(r_tool_xyzs_warped, rot_r_warped)
            ])
        warped_demo["r_gripper_tool_frame"]["position"] = r_gripper_xyzs_warped
        warped_demo["r_gripper_tool_frame"][
            "orientation"] = r_gripper_quats_warped

    if cloud_xyz:
        old_cloud_xyz_pts = np.asarray(demo["cloud_xyz"]).reshape(-1, 3)
        new_cloud_xyz_pts = reg.transform_points(old_cloud_xyz_pts)
        warped_demo["cloud_xyz"] = new_cloud_xyz_pts.reshape(
            demo["cloud_xyz"].shape)

    if object_clouds:
        for key in sorted(demo["object_clouds"].keys()):
            old_cloud_xyz_pts = np.asarray(
                demo["object_clouds"][key]["xyz"]).reshape(-1, 3)
            new_cloud_xyz_pts = reg.transform_points(old_cloud_xyz_pts)
            warped_demo["object_clouds"][key]["xyz"] = new_cloud_xyz_pts

    return warped_demo
Пример #7
0
def transform_verb_demo(warp, demo, l_offset=None, r_offset=None):
    """
    demo: array with the following fields: r_gripper_xyzs, l_gripper_xyzs, r_gripper_quats, l_gripper_quats, cloud_xyz, possible object_clouds
    transform each field using warp
    l_offset and r_offset tell you where the tools are, so you can do tool stuff
    (note: this doesn't currently work when important point is moved relative to demo)
    
    """
    warped_demo = group_to_dict(demo)  # deep copy it

    if demo["arms_used"] in "lb":
        if l_offset is None:
            l_tool_xyzs = demo["l_gripper_tool_frame"]["position"]
        else:
            l_tool_xyzs = np.array([
                xyz + np.dot(rot[:3, :3], l_offset) for (xyz, rot) in zip(
                    demo["l_gripper_tool_frame"]["position"],
                    quats2mats(demo["l_gripper_tool_frame"]["orientation"]))
            ])
        l_tool_xyzs_warped, rot_l_warped = warp.transform_frames(
            l_tool_xyzs,
            quats2mats(demo["l_gripper_tool_frame"]["orientation"]))
        l_gripper_quats_warped = mats2quats(rot_l_warped)
        if l_offset is None:
            l_gripper_xyzs_warped = l_tool_xyzs_warped
        else:
            l_gripper_xyzs_warped = np.array([
                xyz - np.dot(rot[:3, :3], l_offset)
                for (xyz, rot) in zip(l_tool_xyzs_warped, rot_l_warped)
            ])

        warped_demo["l_gripper_tool_frame"]["position"] = l_gripper_xyzs_warped
        warped_demo["l_gripper_tool_frame"][
            "orientation"] = l_gripper_quats_warped

    if demo["arms_used"] in "rb":
        if r_offset is None:
            r_tool_xyzs = demo["r_gripper_tool_frame"]["position"]
        else:
            r_tool_xyzs = np.array([
                xyz + np.dot(rot[:3, :3], r_offset) for (xyz, rot) in zip(
                    demo["r_gripper_tool_frame"]["position"],
                    quats2mats(demo["r_gripper_tool_frame"]["orientation"]))
            ])
        r_tool_xyzs_warped, rot_r_warped = warp.transform_frames(
            r_tool_xyzs,
            quats2mats(demo["r_gripper_tool_frame"]["orientation"]))
        r_gripper_quats_warped = mats2quats(rot_r_warped)
        if r_offset is None:
            r_gripper_xyzs_warped = r_tool_xyzs_warped
        else:
            r_gripper_xyzs_warped = np.array([
                xyz - np.dot(rot[:3, :3], r_offset)
                for (xyz, rot) in zip(r_tool_xyzs_warped, rot_r_warped)
            ])
        warped_demo["r_gripper_tool_frame"]["position"] = r_gripper_xyzs_warped
        warped_demo["r_gripper_tool_frame"][
            "orientation"] = r_gripper_quats_warped

    if "object_clouds" in demo:
        for key in sorted(demo["object_clouds"].keys()):
            old_cloud_xyz_pts = np.asarray(
                demo["object_clouds"][key]["xyz"]).reshape(-1, 3)
            new_cloud_xyz_pts = warp.transform_points(old_cloud_xyz_pts)
            warped_demo["object_clouds"][key]["xyz"] = new_cloud_xyz_pts

    return warped_demo
Пример #8
0
def make_traj_multi_stage_do_work(current_stage_info, cur_exp_clouds, clouds_frame_id, stage_num, prev_stage_info, prev_exp_clouds, verb_data_accessor, to_gripper_frame_func=None):

    arms_used = current_stage_info.arms_used
    verb_stage_data = verb_data_accessor.get_demo_data(current_stage_info.stage_name)

    if stage_num == 0:
        # don't do any extra transformation for the first stage
        prev_demo_to_exp_grip_transform_lin_rigid = np.identity(4)
        # no special point translation for first stage since no tool yet
        special_point_translation = np.identity(4)
    elif stage_num > 0:

        # make sure that the tool stage only uses one arm (the one with the tool)
        assert arms_used in ['r', 'l']

        prev_stage_data = verb_data_accessor.get_demo_data(prev_stage_info.stage_name)
        prev_demo_pc = prev_stage_data["object_clouds"][prev_stage_info.item]["xyz"]
        prev_exp_pc = prev_exp_clouds[0]
        prev_demo_pc_down = voxel_downsample(prev_demo_pc, .02)
        prev_exp_pc_down = voxel_downsample(prev_exp_pc, .02)

        gripper_data_key = "%s_gripper_tool_frame" % (arms_used)

        # transform point cloud in base frame to gripper frame
        # assume right hand has the tool for now
        # use the last pose of the gripper in the stage to figure out the point cloud of the tool in the gripper frame when the tool was grabbed
        prev_demo_gripper_pos = prev_stage_data[gripper_data_key]["position"][-1]
        prev_demo_gripper_orien = prev_stage_data[gripper_data_key]["orientation"][-1]
        prev_demo_gripper_to_base_transform = juc.trans_rot_to_hmat(prev_demo_gripper_pos, prev_demo_gripper_orien)
        prev_demo_base_to_gripper_transform = np.linalg.inv(prev_demo_gripper_to_base_transform)
        prev_demo_pc_in_gripper_frame = np.array([apply_transform(prev_demo_base_to_gripper_transform, point) for point in prev_demo_pc_down])

        # get the new point cloud in the new gripper frame
        # prev_exp_pc_in_gripper_frame = [apply_transform(prev_exp_base_to_gripper_transform, point) for point in prev_exp_pc_down]
        if to_gripper_frame_func is None:
            prev_exp_pc_in_gripper_frame = to_gripper_frame_tf_listener(prev_exp_pc_down, gripper_data_key)
        else:
            prev_exp_pc_in_gripper_frame = to_gripper_frame_func(prev_exp_pc_down, gripper_data_key)

        # get the transformation from the new point cloud to the old point cloud for the previous stage
        prev_demo_to_exp_grip_transform = get_tps_transform(prev_demo_pc_in_gripper_frame, prev_exp_pc_in_gripper_frame)

        # transforms gripper trajectory point into special point trajectory point
        if prev_stage_info.special_point is None:
            # if there is no special point, linearize at origin
            prev_demo_to_exp_grip_transform_lin_rigid = lin_rigid_tps_transform(prev_demo_to_exp_grip_transform, np.zeros(3))
            # don't do a special point translation if there is no specified special point
            special_point_translation = np.identity(4)
        else:
            prev_demo_to_exp_grip_transform_lin_rigid = lin_rigid_tps_transform(prev_demo_to_exp_grip_transform, np.array(prev_stage_info.special_point))
            # translation from gripper pose in world frame to special point pose in world frame
            special_point_translation = jut.translation_matrix(np.array(prev_stage_info.special_point))

    if arms_used != 'b':
        arms_used_list = [arms_used]
    else:
        arms_used_list = ['r', 'l']

    warped_stage_data = group_to_dict(verb_stage_data) # deep copy it

    resp = MakeTrajectoryResponse()
    traj = resp.traj
    traj.arms_used = arms_used

    for arm in arms_used_list:

        gripper_data_key = "%s_gripper_tool_frame" % (arm)
        
        # find the special point trajectory before the target transformation
        cur_demo_gripper_traj_xyzs = verb_stage_data[gripper_data_key]["position"]
        cur_demo_gripper_traj_oriens = verb_stage_data[gripper_data_key]["orientation"]
        cur_demo_gripper_traj_mats = [juc.trans_rot_to_hmat(trans, orien) for (trans, orien) in zip(cur_demo_gripper_traj_xyzs, cur_demo_gripper_traj_oriens)]
        cur_mid_spec_pt_traj_mats = [np.dot(gripper_mat, special_point_translation) for gripper_mat in cur_demo_gripper_traj_mats]

        # find the transformation from the new special point to the gripper frame
        cur_exp_inv_special_point_transformation = np.linalg.inv(np.dot(prev_demo_to_exp_grip_transform_lin_rigid, special_point_translation))

        # save the demo special point traj for plotting
        plot_spec_pt_traj = []
        for gripper_mat in cur_demo_gripper_traj_mats:
            spec_pt_xyz, spec_pt_orien = juc.hmat_to_trans_rot(np.dot(gripper_mat, special_point_translation))
            plot_spec_pt_traj.append(spec_pt_xyz)

        print 'grip transform:'
        print prev_demo_to_exp_grip_transform_lin_rigid
        print 'special point translation:'
        print special_point_translation
        print 'inverse special point translation:'
        print cur_exp_inv_special_point_transformation

        # find the target transformation for the experiment scene
        demo_object_clouds = [verb_stage_data["object_clouds"][obj_name]["xyz"] for obj_name in verb_stage_data["object_clouds"].keys()]
        if len(demo_object_clouds) > 1:
            raise Exception("i don't know what to do with multiple object clouds")
        x_nd = voxel_downsample(demo_object_clouds[0], .02)
        y_md = voxel_downsample(cur_exp_clouds[0], .02)
        # transformation from old target object to new target object in world frame
        cur_demo_to_exp_transform = get_tps_transform(x_nd, y_md)

        # apply the target warping transformation to the special point trajectory
        cur_mid_spec_pt_traj_xyzs, cur_mid_spec_pt_traj_oriens = [], []
        for cur_mid_spec_pt_traj_mat in cur_mid_spec_pt_traj_mats:
            cur_mid_spec_pt_traj_xyz, cur_mid_spec_pt_traj_orien = juc.hmat_to_trans_rot(cur_mid_spec_pt_traj_mat)
            cur_mid_spec_pt_traj_xyzs.append(cur_mid_spec_pt_traj_xyz)
            cur_mid_spec_pt_traj_oriens.append(juc.quat2mat(cur_mid_spec_pt_traj_orien))
        cur_exp_spec_pt_traj_xyzs, cur_exp_spec_pt_traj_oriens = cur_demo_to_exp_transform.transform_frames(np.array(cur_mid_spec_pt_traj_xyzs), np.array(cur_mid_spec_pt_traj_oriens))
        plot_warped_spec_pt_traj = cur_exp_spec_pt_traj_xyzs #save the special point traj for plotting
        cur_exp_spec_pt_traj_mats = [juc.trans_rot_to_hmat(cur_exp_spec_pt_traj_xyz, mat2quat(cur_exp_spec_pt_traj_orien)) for cur_exp_spec_pt_traj_xyz, cur_exp_spec_pt_traj_orien in zip(cur_exp_spec_pt_traj_xyzs, cur_exp_spec_pt_traj_oriens)]

        # transform the warped special point trajectory back to a gripper trajectory in the experiment
        cur_exp_gripper_traj_mats = [np.dot(spec_pt_mat, cur_exp_inv_special_point_transformation) for spec_pt_mat in cur_exp_spec_pt_traj_mats]

        warped_stage_data[gripper_data_key]["position"] = []
        warped_stage_data[gripper_data_key]["orientation"] = []
        for exp_traj_mat in cur_exp_gripper_traj_mats:
            warped_pos, warped_orien = juc.hmat_to_trans_rot(exp_traj_mat)
            warped_stage_data[gripper_data_key]["position"].append(warped_pos)
            warped_stage_data[gripper_data_key]["orientation"].append(warped_orien)

        if arm == 'r':
            traj.r_gripper_poses.poses = xyzs_quats_to_poses(warped_stage_data[gripper_data_key]["position"], warped_stage_data[gripper_data_key]["orientation"])
            print "poses: ", len(traj.r_gripper_poses.poses)
            traj.r_gripper_angles = warped_stage_data["r_gripper_joint"]
            traj.r_gripper_poses.header.frame_id = clouds_frame_id
        elif arm == 'l':
            traj.l_gripper_poses.poses = xyzs_quats_to_poses(warped_stage_data[gripper_data_key]["position"], warped_stage_data[gripper_data_key]["orientation"])
            print "poses: ", len(traj.l_gripper_poses.poses)
            traj.l_gripper_angles = warped_stage_data["l_gripper_joint"]
            traj.l_gripper_poses.header.frame_id = clouds_frame_id

    Globals.handles = []
    plot_original_and_warped_demo_and_spec_pt(verb_stage_data, warped_stage_data, plot_spec_pt_traj, plot_warped_spec_pt_traj, traj)
    
    pose_array = conversions.array_to_pose_array(y_md, 'base_footprint')
    Globals.handles.append(Globals.rviz.draw_curve(pose_array, rgba = (0,0,1,1),width=.01,type=Marker.CUBE_LIST))
    return resp
Пример #9
0
 def get_demo_stage_data(self, stage_name):
     h5file = h5py.File(self.h5path, "r")
     out = group_to_dict(h5file[stage_name])
     h5file.close()
     return out
Пример #10
0
def make_traj_multi_stage_do_work(demo_name, exp_target_cloud, frame_id, stage_num, tool_stage_info, exp_tool_cloud, verb_data_accessor, world_to_grip_transform_func, transform_type):
    
    current_stage_info = verb_data_accessor.get_stage_info(demo_name, stage_num)
    arms_used = current_stage_info.arms_used

    # make sure this is the first stage (no tool) or only one arm is being used with a tool
    assert stage_num == 0 or (arms_used in ['r', 'l'])

    if stage_num == 0:
        tool_stage_data = None
        # don't do any extra transformation for the first stage
        demo_to_exp_tool_transform = None
        # no special point translation for first stage since no tool yet
        spec_pt_in_grip = np.zeros(3)
    else:
        tool_stage_data = verb_data_accessor.get_demo_stage_data(tool_stage_info.stage_name)
        # make sure that the tool stage only uses one arm (the one with the tool)
        demo_to_exp_tool_transform = get_demo_to_exp_tool_transform(verb_data_accessor, tool_stage_info,
                                                                    exp_tool_cloud, transform_type)
        spec_pt_in_grip = np.zeros(3) if tool_stage_info.special_point is None else tool_stage_info.special_point

    current_stage_data = verb_data_accessor.get_demo_stage_data(current_stage_info.stage_name)

    resp = MakeTrajectoryResponse()
    resp.traj.arms_used = arms_used

    # find the target transformation for the experiment scene
    demo_to_exp_target_transform = get_demo_to_exp_target_transform(current_stage_data["object_cloud"][current_stage_info.item]["xyz"],
                                                                    exp_target_cloud,
                                                                    transform_type)

    warped_stage_data = group_to_dict(current_stage_data) # deep copy it
    arms_used_list = ['r', 'l'] if arms_used == 'b' else [arms_used]
    for arm in arms_used_list:
        gripper_data_key = "%s_gripper_tool_frame" % (arm)
        
        # get the demo gripper trajectory
        demo_target_grip_traj_mats = get_demo_grip_traj_mats(current_stage_data, arm)

        # get the demo special point trajectory by applying the special point translation
        demo_spec_pt_traj_mats = get_demo_spec_pt_traj_mats(demo_target_grip_traj_mats, spec_pt_in_grip)

        # get the warped special point trajectory by applying the target warping transformation to the demo special point trajectory
        warped_spec_pt_traj_mats = get_warped_spec_pt_traj_mats(demo_spec_pt_traj_mats, demo_to_exp_target_transform)

        # get the warped trajectory for the gripper using the tool warping transformation
        warped_grip_traj_mats = get_warped_grip_traj_mats(warped_spec_pt_traj_mats, tool_stage_data,
                                                          demo_to_exp_tool_transform, spec_pt_in_grip,
                                                          world_to_grip_transform_func, arm)

        warped_transs, warped_rots = juc.hmats_to_transs_rots(warped_grip_traj_mats)
        warped_stage_data[gripper_data_key]["position"] = warped_transs
        warped_stage_data[gripper_data_key]["orientation"] = warped_rots

        set_traj_fields_for_response(warped_stage_data, resp, arm, frame_id)

        # save the demo special point traj for plotting
        demo_spec_pt_xyzs, exp_spec_pt_xyzs = [], []
        if stage_num > 0:
            demo_spec_pt_xyzs = juc.hmats_to_transs_rots(demo_spec_pt_traj_mats)[0]
            exp_spec_pt_xyzs = juc.hmats_to_transs_rots(warped_spec_pt_traj_mats)[0]

    del Globals.handles[:]

    # plot the demo and warped special points
    current_spec_pt = current_stage_info.special_point
    # currently, don't know which arm grabbed the tool if both arms were used in a stage
    if stage_num == 0 and current_spec_pt is not None and arms_used in ['l', 'r']:
        plot_demo_and_warped_tool_spec_pt(current_spec_pt, current_stage_data, demo_to_exp_target_transform, arms_used)

    # plot the gripper and special point trajectories (red is demo, green is warped)
    plot_original_and_warped_demo_and_spec_pt(current_stage_data, warped_stage_data,
                                              demo_spec_pt_xyzs, exp_spec_pt_xyzs,
                                              arms_used)

    return resp