Пример #1
0
  def while_body(g_pools, g_logits, i):
    with tf.control_dependencies([g_pools, g_logits]):

      test_zs = utils.make_z_normal(1, local_batch_size, FLAGS.z_dim)
      # Uniform distribution
      # TODO(goodfellow) Use true distribution of ImageNet classses
      gen_class_logits = tf.zeros((local_batch_size, num_classes))
      gen_class_ints = tf.multinomial(gen_class_logits, 1)
      gen_sparse_class = tf.squeeze(gen_class_ints)

      with tf.variable_scope('model'):
        generator = generator_fn(
          test_zs[0],
          gen_sparse_class,
          FLAGS.gf_dim,
          FLAGS.num_classes)

        pools, logits = utils.run_custom_inception(
            generator,
            output_tensor=['pool_3:0', 'logits:0'],
            graph_def=graph_def)
        g_pools = tf.concat([g_pools, pools], 0)
        g_logits = tf.concat([g_logits, logits], 0)

      return (g_pools, g_logits, tf.add(i, 1))
Пример #2
0
    def while_body(g_pools, g_logits, i):
        with tf.control_dependencies([g_pools, g_logits]):

            test_zs = utils.make_z_normal(1, local_batch_size, FLAGS.z_dim)
            # Uniform distribution
            gen_class_logits = tf.zeros((local_batch_size, num_classes))
            gen_class_ints = tf.multinomial(gen_class_logits, 1)
            gen_sparse_class = tf.squeeze(gen_class_ints)

            generator = generator_fn(test_zs[0],
                                     gen_sparse_class,
                                     FLAGS.gf_dim,
                                     FLAGS.num_classes,
                                     is_training=False)

            pools, logits = utils.run_custom_inception(
                generator,
                output_tensor=['pool_3:0', 'logits:0'],
                graph_def=graph_def)
            g_pools = tf.concat([g_pools, pools], 0)
            g_logits = tf.concat([g_logits, logits], 0)

            return (g_pools, g_logits, tf.add(i, 1))
Пример #3
0
def main(_, is_test=False):
    print('d_learning_rate', FLAGS.discriminator_learning_rate)
    print('g_learning_rate', FLAGS.generator_learning_rate)
    print('data_dir', FLAGS.data_dir)
    print(FLAGS.loss_type, FLAGS.batch_size, FLAGS.beta1)
    print('gf_df_dim', FLAGS.gf_dim, FLAGS.df_dim)
    print('Starting the program..')
    gfile.MakeDirs(FLAGS.checkpoint_dir)

    model_dir = '%s_%s' % ('celebA', FLAGS.batch_size)
    logdir = os.path.join(FLAGS.checkpoint_dir, model_dir)
    gfile.MakeDirs(logdir)

    graph = tf.Graph()
    with graph.as_default():

        with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
            # Instantiate global_step.
            global_step = tf.train.create_global_step()

        # Create model with FLAGS, global_step, and devices.
        devices = [
            '/gpu:{}'.format(tower) for tower in range(FLAGS.num_towers)
        ]

        # Create noise tensors
        zs = utils.make_z_normal(FLAGS.num_towers, FLAGS.batch_size,
                                 FLAGS.z_dim)

        print('save_summaries_steps', FLAGS.save_summaries_steps)

        dcgan = model.SNGAN(zs=zs,
                            config=FLAGS,
                            global_step=global_step,
                            devices=devices)

        with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)):
            # Create sync_hooks when needed.
            if FLAGS.sync_replicas and FLAGS.num_workers > 1:
                print('condition 1')
                sync_hooks = [
                    dcgan.d_opt.make_session_run_hook(FLAGS.task == 0),
                    dcgan.g_opt.make_session_run_hook(FLAGS.task == 0)
                ]
            else:
                print('condition 2')
                sync_hooks = []

        train_ops = tfgan.GANTrainOps(
            generator_train_op=dcgan.g_optim,
            discriminator_train_op=dcgan.d_optim,
            global_step_inc_op=dcgan.increment_global_step)

        # We set allow_soft_placement to be True because Saver for the DCGAN model
        # gets misplaced on the GPU.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        if is_test:
            return graph

        print("G step: ", FLAGS.g_step)
        print("D_step: ", FLAGS.d_step)
        train_steps = tfgan.GANTrainSteps(FLAGS.g_step, FLAGS.d_step)

        tfgan.gan_train(
            train_ops,
            get_hooks_fn=tfgan.get_sequential_train_hooks(
                train_steps=train_steps),
            hooks=([tf.train.StopAtStepHook(num_steps=2000000)] + sync_hooks),
            logdir=logdir,
            # master=FLAGS.master,
            # scaffold=scaffold, # load from google checkpoint
            is_chief=(FLAGS.task == 0),
            save_summaries_steps=FLAGS.save_summaries_steps,
            save_checkpoint_secs=FLAGS.save_checkpoint_secs,
            config=session_config)
Пример #4
0
def main(_):
  model_dir = '%s_%s' % ('imagenet', FLAGS.batch_size)
  checkpoint_dir = os.path.join(FLAGS.checkpoint_dir, model_dir)
  log_dir = os.path.join(FLAGS.eval_dir, model_dir)
  graph_def = None  # pylint: disable=protected-access

  # Batch size to feed batches of images through Inception and the generator
  # to extract feature vectors to later stack together and compute metrics.
  local_batch_size = FLAGS.dcgan_generator_batch_size
  if FLAGS.generator_type == 'baseline':
    generator_fn = generator_module.generator
  elif FLAGS.generator_type == 'test':
    generator_fn = generator_module.generator_test
  else:
    raise NotImplementedError
  if FLAGS.num_towers != 1 or FLAGS.num_workers != 1:
    raise NotImplementedError(
        'The eval job does not currently support using multiple GPUs')

  # Get activations from real images.
  with tf.device('/device:CPU:1'):
    real_pools, real_images = utils.get_real_activations(
        FLAGS.data_dir,
        local_batch_size,
        FLAGS.eval_sample_size // local_batch_size,
        label_offset=-1,
        shuffle_buffer_size=FLAGS.shuffle_buffer_size)

  # Uniform distribution
  # TODO(goodfellow) Use true distribution of ImageNet classses
  num_classes = FLAGS.num_classes
  gen_class_logits = tf.zeros((local_batch_size, num_classes))
  gen_class_ints = tf.multinomial(gen_class_logits, 1)
  gen_sparse_class = tf.squeeze(gen_class_ints)


  with tf.variable_scope('model'):

    # Generate the first batch of generated images and extract activations;
    # this bootstraps the while_loop with a pools and logits tensor.


    test_zs = utils.make_z_normal(1, local_batch_size, FLAGS.z_dim)
    generator = generator_fn(
        test_zs[0],
        gen_sparse_class,
        FLAGS.gf_dim,
        FLAGS.num_classes)



    pools, logits = utils.run_custom_inception(
        generator, output_tensor=['pool_3:0', 'logits:0'], graph_def=graph_def)

  # Set up while_loop to compute activations of generated images from generator.
  def while_cond(g_pools, g_logits, i):  # pylint: disable=unused-argument
    return tf.less(i, FLAGS.eval_sample_size // local_batch_size)

  # We use a while loop because we want to generate a batch of images
  # and then feed that batch through Inception to retrieve the activations.
  # Otherwise, if we generate all the samples first and then compute all the
  # activations, we will run out of memory.
  def while_body(g_pools, g_logits, i):
    with tf.control_dependencies([g_pools, g_logits]):

      test_zs = utils.make_z_normal(1, local_batch_size, FLAGS.z_dim)
      # Uniform distribution
      # TODO(goodfellow) Use true distribution of ImageNet classses
      gen_class_logits = tf.zeros((local_batch_size, num_classes))
      gen_class_ints = tf.multinomial(gen_class_logits, 1)
      gen_sparse_class = tf.squeeze(gen_class_ints)

      with tf.variable_scope('model'):
        generator = generator_fn(
          test_zs[0],
          gen_sparse_class,
          FLAGS.gf_dim,
          FLAGS.num_classes)

        pools, logits = utils.run_custom_inception(
            generator,
            output_tensor=['pool_3:0', 'logits:0'],
            graph_def=graph_def)
        g_pools = tf.concat([g_pools, pools], 0)
        g_logits = tf.concat([g_logits, logits], 0)

      return (g_pools, g_logits, tf.add(i, 1))

  # Get the activations
  i = tf.constant(1)
  new_generator_pools_list, new_generator_logits_list, _ = tf.while_loop(
      while_cond,
      while_body, [pools, logits, i],
      shape_invariants=[
          tf.TensorShape([None, 2048]),
          tf.TensorShape([None, 1008]),
          i.get_shape()
      ],
      parallel_iterations=1,
      back_prop=False,
      swap_memory=True,
      name='GeneratedActivations')

  new_generator_pools_list.set_shape([FLAGS.eval_sample_size, 2048])
  new_generator_logits_list.set_shape([FLAGS.eval_sample_size, 1008])

  # TODO(sbhupatiraju) Why is FID negative?

  # Get a small batch of samples from generator to dispaly in TensorBoard
  vis_batch_size = 16
  eval_vis_zs = utils.make_z_normal(
      1, vis_batch_size, FLAGS.z_dim)
  # Uniform distribution
  # TODO(goodfellow) Use true distribution of ImageNet classses
  gen_class_logits_vis = tf.zeros((vis_batch_size, num_classes))
  gen_class_ints_vis = tf.multinomial(gen_class_logits_vis, 1)
  gen_sparse_class_vis = tf.squeeze(gen_class_ints_vis)

  with tf.variable_scope('model'):
    eval_vis_images = generator_fn(
        eval_vis_zs[0],
        gen_sparse_class_vis,
        FLAGS.gf_dim,
        FLAGS.num_classes
        )
  eval_vis_images = tf.cast((eval_vis_images + 1.) * 127.5, tf.uint8)

  with tf.variable_scope('eval_vis'):
    tf.summary.image('generated_images', eval_vis_images)
    tf.summary.image('real_images', real_images)
    tf.summary.image('real_images_grid',
                     tfgan.eval.image_grid(
                         real_images[:16],
                         grid_shape=utils.squarest_grid_size(16),
                         image_shape=(128, 128)))
    tf.summary.image('generated_images_grid',
                     tfgan.eval.image_grid(
                         eval_vis_images[:16],
                         grid_shape=utils.squarest_grid_size(16),
                         image_shape=(128, 128)))

  # Use the activations from the real images and generated images to compute
  # Inception score and FID.
  generated_logits = tf.concat(new_generator_logits_list, 0)
  generated_pools = tf.concat(new_generator_pools_list, 0)

  # Compute Frechet Inception Distance and Inception score
  incscore = tfgan.eval.classifier_score_from_logits(generated_logits)
  fid = tfgan.eval.frechet_classifier_distance_from_activations(
      real_pools, generated_pools)

  with tf.variable_scope('eval'):
    tf.summary.scalar('fid', fid)
    tf.summary.scalar('incscore', incscore)

  session_config = tf.ConfigProto(
      allow_soft_placement=True, log_device_placement=False)

  tf.contrib.training.evaluate_repeatedly(
      checkpoint_dir=checkpoint_dir,
      hooks=[
          tf.contrib.training.SummaryAtEndHook(log_dir),
          tf.contrib.training.StopAfterNEvalsHook(1)
      ],
      config=session_config)