Пример #1
0
 def find_latest_local(self):
     """
     >>> self = Deployer()
     >>> self.find_pretrained()
     >>> self.find_latest_local()
     """
     from os.path import getctime
     task_clf_candidates = self.find_pretrained()
     task_clf_fpaths = {}
     for task_key, fpaths in task_clf_candidates.items():
         # Find the classifier most recently created
         fpath = fpaths[ut.argmax(map(getctime, fpaths))]
         task_clf_fpaths[task_key] = fpath
     return task_clf_fpaths
Пример #2
0
    def find_latest_remote(self):
        """
        Used to update the published dict

        CommandLine:
            python -m wbia.algo.verif.vsone find_latest_remote

        Example:
            >>> # DISABLE_DOCTEST
            >>> from wbia.algo.verif.vsone import *  # NOQA
            >>> self = Deployer()
            >>> task_clf_names = self.find_latest_remote()
        """
        base_url = 'https://{remote}/public/models/pairclf'.format(
            **self.publish_info)
        import requests
        import bs4

        resp = requests.get(base_url)
        soup = bs4.BeautifulSoup(resp.text, 'html.parser')
        table = soup.findAll('table')[0]

        def parse_bs_table(table):
            n_columns = 0
            n_rows = 0
            column_names = []
            # Find number of rows and columns
            # we also find the column titles if we can
            for row in table.find_all('tr'):
                td_tags = row.find_all('td')
                if len(td_tags) > 0:
                    n_rows += 1
                    if n_columns == 0:
                        n_columns = len(td_tags)
                # Handle column names if we find them
                th_tags = row.find_all('th')
                if len(th_tags) > 0 and len(column_names) == 0:
                    for th in th_tags:
                        column_names.append(th.get_text())

            # Safeguard on Column Titles
            if len(column_names) > 0 and len(column_names) != n_columns:
                raise Exception(
                    'Column titles do not match the number of columns')
            columns = column_names if len(column_names) > 0 else range(
                0, n_columns)
            import pandas as pd

            df = pd.DataFrame(columns=columns, index=list(range(0, n_rows)))
            row_marker = 0
            for row in table.find_all('tr'):
                column_marker = 0
                columns = row.find_all('td')
                for column in columns:
                    df.iat[row_marker,
                           column_marker] = column.get_text().strip()
                    column_marker += 1
                if len(columns) > 0:
                    row_marker += 1
            return df

        df = parse_bs_table(table)
        # Find all available models
        df = df[df['Name'].map(lambda x: x.endswith('.cPkl'))]
        # df = df[df['Last modified'].map(len) > 0]

        fname_fmt = self.fname_fmtstr + '.cPkl'
        task_clf_candidates = ut.ddict(list)
        import parse

        for idx, row in df.iterrows():
            fname = basename(row['Name'])
            result = parse.parse(fname_fmt, fname)
            if result:
                task_key = result.named['task_key']
                species = result.named['species']
                task_clf_candidates[(species, task_key)].append(idx)

        task_clf_fnames = ut.ddict(dict)
        for key, idxs in task_clf_candidates.items():
            species, task_key = key
            # Find the classifier most recently created
            max_idx = ut.argmax(df.loc[idxs]['Last modified'].tolist())
            fname = df.loc[idxs[max_idx]]['Name']
            task_clf_fnames[species][task_key] = fname

        logger.info('published = ' + ut.repr2(task_clf_fnames, nl=2))
        return task_clf_fnames
Пример #3
0
    def update_visual_attrs(infr,
                            graph=None,
                            show_reviewed_edges=True,
                            show_unreviewed_edges=False,
                            show_inferred_diff=True,
                            show_inferred_same=True,
                            show_recent_review=False,
                            highlight_reviews=True,
                            show_inconsistency=True,
                            wavy=False,
                            simple_labels=False,
                            show_labels=True,
                            reposition=True,
                            use_image=False,
                            edge_overrides=None,
                            node_overrides=None,
                            colorby='name_label',
                            **kwargs
                            # hide_unreviewed_inferred=True
                            ):
        import wbia.plottool as pt

        infr.print('update_visual_attrs', 3)
        if graph is None:
            graph = infr.graph
        # if hide_cuts is not None:
        #     # show_unreviewed_cuts = not hide_cuts
        #     show_reviewed_cuts = not hide_cuts

        if not getattr(infr, '_viz_init_nodes', False):
            infr._viz_init_nodes = True
            nx.set_node_attributes(graph, name='shape', values='circle')
            # infr.set_node_attrs('shape', 'circle')

        if getattr(infr, '_viz_image_config_dirty', True):
            infr.update_node_image_attribute(graph=graph, use_image=use_image)

        def get_any(dict_, keys, default=None):
            for key in keys:
                if key in dict_:
                    return dict_[key]
            return default

        show_cand = get_any(
            kwargs, ['show_candidate_edges', 'show_candidates', 'show_cand'])
        if show_cand is not None:
            show_cand = True
            show_reviewed_edges = True
            show_unreviewed_edges = True
            show_inferred_diff = True
            show_inferred_same = True

        if kwargs.get('show_all'):
            show_cand = True

        # alpha_low = .5
        alpha_med = 0.9
        alpha_high = 1.0

        dark_background = graph.graph.get('dark_background', None)

        # Ensure we are starting from a clean slate
        # if reposition:
        ut.nx_delete_edge_attr(graph, infr.visual_edge_attrs_appearance)

        # Set annotation node labels
        node_to_nid = None
        if not show_labels:
            nx.set_node_attributes(graph,
                                   name='label',
                                   values=ut.dzip(graph.nodes(), ['']))
        else:
            if simple_labels:
                nx.set_node_attributes(
                    graph,
                    name='label',
                    values={n: str(n)
                            for n in graph.nodes()})
            else:
                if node_to_nid is None:
                    node_to_nid = nx.get_node_attributes(graph, 'name_label')
                node_to_view = nx.get_node_attributes(graph, 'viewpoint')
                if node_to_view:
                    annotnode_to_label = {
                        aid: 'aid=%r%s\nnid=%r' %
                        (aid, node_to_view[aid], node_to_nid[aid])
                        for aid in graph.nodes()
                    }
                else:
                    annotnode_to_label = {
                        aid: 'aid=%r\nnid=%r' % (aid, node_to_nid[aid])
                        for aid in graph.nodes()
                    }
                nx.set_node_attributes(graph,
                                       name='label',
                                       values=annotnode_to_label)

        # NODE_COLOR: based on name_label
        ut.color_nodes(graph,
                       labelattr=colorby,
                       outof=kwargs.get('outof', None),
                       sat_adjust=-0.4)

        # EDGES:
        # Grab different types of edges
        edges, edge_colors = infr.get_colored_edge_weights(
            graph, highlight_reviews)

        # reviewed_states = nx.get_edge_attributes(graph, 'evidence_decision')
        reviewed_states = {
            e: infr.edge_decision(e)
            for e in infr.graph.edges()
        }
        edge_to_inferred_state = nx.get_edge_attributes(
            graph, 'inferred_state')
        # dummy_edges = [edge for edge, flag in
        #                nx.get_edge_attributes(graph, '_dummy_edge').items()
        #                if flag]
        edge_to_reviewid = nx.get_edge_attributes(graph, 'review_id')
        recheck_edges = [
            edge for edge, split in nx.get_edge_attributes(
                graph, 'maybe_error').items() if split
        ]
        decision_to_edge = ut.group_pairs(reviewed_states.items())
        neg_edges = decision_to_edge[NEGTV]
        pos_edges = decision_to_edge[POSTV]
        incomp_edges = decision_to_edge[INCMP]
        unreviewed_edges = decision_to_edge[UNREV]

        inferred_same = [
            edge for edge, state in edge_to_inferred_state.items()
            if state == 'same'
        ]
        inferred_diff = [
            edge for edge, state in edge_to_inferred_state.items()
            if state == 'diff'
        ]
        inconsistent_external = [
            edge for edge, state in edge_to_inferred_state.items()
            if state == 'inconsistent_external'
        ]
        inferred_notcomp = [
            edge for edge, state in edge_to_inferred_state.items()
            if state == 'notcomp'
        ]

        reviewed_edges = incomp_edges + pos_edges + neg_edges
        compared_edges = pos_edges + neg_edges
        uncompared_edges = ut.setdiff(edges, compared_edges)
        nontrivial_inferred_same = ut.setdiff(
            inferred_same, pos_edges + neg_edges + incomp_edges)
        nontrivial_inferred_diff = ut.setdiff(
            inferred_diff, pos_edges + neg_edges + incomp_edges)
        nontrivial_inferred_edges = nontrivial_inferred_same + nontrivial_inferred_diff

        # EDGE_COLOR: based on edge_weight
        nx.set_edge_attributes(graph,
                               name='color',
                               values=ut.dzip(edges, edge_colors))

        # LINE_WIDTH: based on review_state
        # unreviewed_width = 2.0
        # reviewed_width = 5.0
        unreviewed_width = 1.0
        reviewed_width = 2.0
        if highlight_reviews:
            nx.set_edge_attributes(
                graph,
                name='linewidth',
                values=ut.dzip(reviewed_edges, [reviewed_width]),
            )
            nx.set_edge_attributes(
                graph,
                name='linewidth',
                values=ut.dzip(unreviewed_edges, [unreviewed_width]),
            )
        else:
            nx.set_edge_attributes(graph,
                                   name='linewidth',
                                   values=ut.dzip(edges, [unreviewed_width]))

        # EDGE_STROKE: based on decision and maybe_error
        # fg = pt.WHITE if dark_background else pt.BLACK
        # nx.set_edge_attributes(graph, name='stroke', values=ut.dzip(reviewed_edges, [{'linewidth': 3, 'foreground': fg}]))
        if show_inconsistency:
            nx.set_edge_attributes(
                graph,
                name='stroke',
                values=ut.dzip(recheck_edges, [{
                    'linewidth': 5,
                    'foreground': infr._error_color
                }]),
            )

        # Set linestyles to emphasize PCCs
        # Dash lines between PCCs inferred to be different
        nx.set_edge_attributes(graph,
                               name='linestyle',
                               values=ut.dzip(inferred_diff, ['dashed']))

        # Treat incomparable/incon-external inference as different
        nx.set_edge_attributes(graph,
                               name='linestyle',
                               values=ut.dzip(inferred_notcomp, ['dashed']))
        nx.set_edge_attributes(graph,
                               name='linestyle',
                               values=ut.dzip(inconsistent_external,
                                              ['dashed']))

        # Dot lines that we are unsure of
        nx.set_edge_attributes(graph,
                               name='linestyle',
                               values=ut.dzip(unreviewed_edges, ['dotted']))

        # Cut edges are implicit and dashed
        # nx.set_edge_attributes(graph, name='implicit', values=ut.dzip(cut_edges, [True]))
        # nx.set_edge_attributes(graph, name='linestyle', values=ut.dzip(cut_edges, ['dashed']))
        # nx.set_edge_attributes(graph, name='alpha', values=ut.dzip(cut_edges, [alpha_med]))

        nx.set_edge_attributes(graph,
                               name='implicit',
                               values=ut.dzip(uncompared_edges, [True]))

        # Only matching edges should impose constraints on the graph layout
        nx.set_edge_attributes(graph,
                               name='implicit',
                               values=ut.dzip(neg_edges, [True]))
        nx.set_edge_attributes(graph,
                               name='alpha',
                               values=ut.dzip(neg_edges, [alpha_med]))
        nx.set_edge_attributes(graph,
                               name='implicit',
                               values=ut.dzip(incomp_edges, [True]))
        nx.set_edge_attributes(graph,
                               name='alpha',
                               values=ut.dzip(incomp_edges, [alpha_med]))

        # Ensure reviewed edges are visible
        nx.set_edge_attributes(graph,
                               name='implicit',
                               values=ut.dzip(reviewed_edges, [False]))
        nx.set_edge_attributes(graph,
                               name='alpha',
                               values=ut.dzip(reviewed_edges, [alpha_high]))

        if True:
            # Infered same edges can be allowed to constrain in order
            # to make things look nice sometimes
            nx.set_edge_attributes(graph,
                                   name='implicit',
                                   values=ut.dzip(inferred_same, [False]))
            nx.set_edge_attributes(graph,
                                   name='alpha',
                                   values=ut.dzip(inferred_same, [alpha_high]))

        if not kwargs.get('show_same', True):
            nx.set_edge_attributes(graph,
                                   name='alpha',
                                   values=ut.dzip(inferred_same, [0]))

        if not kwargs.get('show_diff', True):
            nx.set_edge_attributes(graph,
                                   name='alpha',
                                   values=ut.dzip(inferred_diff, [0]))

        if not kwargs.get('show_positive_edges', True):
            nx.set_edge_attributes(graph,
                                   name='alpha',
                                   values=ut.dzip(pos_edges, [0]))

        if not kwargs.get('show_negative_edges', True):
            nx.set_edge_attributes(graph,
                                   name='alpha',
                                   values=ut.dzip(neg_edges, [0]))

        if not kwargs.get('show_incomparable_edges', True):
            nx.set_edge_attributes(graph,
                                   name='alpha',
                                   values=ut.dzip(incomp_edges, [0]))

        if not kwargs.get('show_between', True):
            if node_to_nid is None:
                node_to_nid = nx.get_node_attributes(graph, 'name_label')
            between_edges = [(u, v) for u, v in edges
                             if node_to_nid[u] != node_to_nid[v]]
            nx.set_edge_attributes(graph,
                                   name='alpha',
                                   values=ut.dzip(between_edges, [0]))

        # SKETCH: based on inferred_edges
        # Make inferred edges wavy
        if wavy:
            # dict(scale=3.0, length=18.0, randomness=None)]
            nx.set_edge_attributes(
                graph,
                name='sketch',
                values=ut.dzip(
                    nontrivial_inferred_edges,
                    [dict(scale=10.0, length=64.0, randomness=None)],
                ),
            )

        # Make dummy edges more transparent
        # nx.set_edge_attributes(graph, name='alpha', values=ut.dzip(dummy_edges, [alpha_low]))
        selected_edges = kwargs.pop('selected_edges', None)

        # SHADOW: based on most recent
        # Increase visibility of nodes with the most recently changed timestamp
        if show_recent_review and edge_to_reviewid and selected_edges is None:
            review_ids = list(edge_to_reviewid.values())
            recent_idxs = ut.argmax(review_ids, multi=True)
            recent_edges = ut.take(list(edge_to_reviewid.keys()), recent_idxs)
            selected_edges = recent_edges

        if selected_edges is not None:
            # TODO: add photoshop-like parameters like
            # spread and size. offset is the same as angle and distance.
            nx.set_edge_attributes(
                graph,
                name='shadow',
                values=ut.dzip(
                    selected_edges,
                    [{
                        'rho': 0.3,
                        'alpha': 0.6,
                        'shadow_color': 'w' if dark_background else 'k',
                        'offset': (0, 0),
                        'scale': 3.0,
                    }],
                ),
            )

        # Z_ORDER: make sure nodes are on top
        nodes = list(graph.nodes())
        nx.set_node_attributes(graph,
                               name='zorder',
                               values=ut.dzip(nodes, [10]))
        nx.set_edge_attributes(graph,
                               name='zorder',
                               values=ut.dzip(edges, [0]))
        nx.set_edge_attributes(graph,
                               name='picker',
                               values=ut.dzip(edges, [10]))

        # VISIBILITY: Set visibility of edges based on arguments
        if not show_reviewed_edges:
            infr.print('Making reviewed edges invisible', 10)
            nx.set_edge_attributes(graph,
                                   name='style',
                                   values=ut.dzip(reviewed_edges, ['invis']))

        if not show_unreviewed_edges:
            infr.print('Making un-reviewed edges invisible', 10)
            nx.set_edge_attributes(graph,
                                   name='style',
                                   values=ut.dzip(unreviewed_edges, ['invis']))

        if not show_inferred_same:
            infr.print('Making nontrivial_same edges invisible', 10)
            nx.set_edge_attributes(graph,
                                   name='style',
                                   values=ut.dzip(nontrivial_inferred_same,
                                                  ['invis']))

        if not show_inferred_diff:
            infr.print('Making nontrivial_diff edges invisible', 10)
            nx.set_edge_attributes(graph,
                                   name='style',
                                   values=ut.dzip(nontrivial_inferred_diff,
                                                  ['invis']))

        if selected_edges is not None:
            # Always show the most recent review (remove setting of invis)
            # infr.print('recent_edges = %r' % (recent_edges,))
            nx.set_edge_attributes(graph,
                                   name='style',
                                   values=ut.dzip(selected_edges, ['']))

        if reposition:
            # LAYOUT: update the positioning layout
            def get_layoutkw(key, default):
                return kwargs.get(key, graph.graph.get(key, default))

            layoutkw = dict(
                prog='neato',
                splines=get_layoutkw('splines', 'line'),
                fontsize=get_layoutkw('fontsize', None),
                fontname=get_layoutkw('fontname', None),
                sep=10 / 72,
                esep=1 / 72,
                nodesep=0.1,
            )
            layoutkw.update(kwargs)
            # logger.info(ut.repr3(graph.edges))
            pt.nx_agraph_layout(graph, inplace=True, **layoutkw)

        if edge_overrides:
            for key, edge_to_attr in edge_overrides.items():
                nx.set_edge_attributes(graph, name=key, values=edge_to_attr)
        if node_overrides:
            for key, node_to_attr in node_overrides.items():
                nx.set_node_attributes(graph, name=key, values=node_to_attr)
Пример #4
0
    def try_auto_review(infr, edge):
        review = {
            'user_id': 'algo:auto_clf',
            'confidence': const.CONFIDENCE.CODE.PRETTY_SURE,
            'evidence_decision': None,
            'meta_decision': NULL,
            'timestamp_s1': None,
            'timestamp_c1': None,
            'timestamp_c2': None,
            'tags': [],
        }
        if infr.is_recovering():
            # Do not autoreview if we are in an inconsistent state
            infr.print('Must manually review inconsistent edge', 3)
            return None
        # Determine if anything passes the match threshold
        primary_task = 'match_state'

        try:
            decision_probs = infr.task_probs[primary_task][edge]
        except KeyError:
            if infr.verifiers is None:
                return None
            if infr.verifiers.get(primary_task, None) is None:
                return None
            # Compute probs if they haven't been done yet
            infr.ensure_priority_scores([edge])
            try:
                decision_probs = infr.task_probs[primary_task][edge]
            except KeyError:
                return None

        primary_thresh = infr.task_thresh[primary_task]
        decision_flags = {
            k: decision_probs[k] > thresh for k, thresh in primary_thresh.items()
        }
        hasone = sum(decision_flags.values()) == 1
        auto_flag = False
        if hasone:
            try:
                # Check to see if it might be confounded by a photobomb
                pb_probs = infr.task_probs['photobomb_state'][edge]
                # pb_probs = infr.task_probs['photobomb_state'].loc[edge]
                # pb_probs = data['task_probs']['photobomb_state']
                pb_thresh = infr.task_thresh['photobomb_state']['pb']
                confounded = pb_probs['pb'] > pb_thresh
            except KeyError:
                logger.info('Warning: confounding task probs not set (i.e. photobombs)')
                confounded = False
            if not confounded:
                # decision = decision_flags.argmax()
                evidence_decision = ut.argmax(decision_probs)
                review['evidence_decision'] = evidence_decision
                truth = infr.match_state_gt(edge)
                if review['evidence_decision'] != truth:
                    infr.print(
                        'AUTOMATIC ERROR edge={}, truth={}, decision={}, probs={}'.format(
                            edge, truth, review['evidence_decision'], decision_probs
                        ),
                        2,
                        color='red',
                    )
                auto_flag = True
        if auto_flag and infr.verbose > 1:
            infr.print('Automatic review success')

        if auto_flag:
            return review
        else:
            return None