Пример #1
0
 def make_prob_annots(infr):
     cm_list = infr.cm_list
     unique_aids = sorted(ut.list_union(*[cm.daid_list for cm in cm_list] +
                                        [[cm.qaid for cm in cm_list]]))
     aid2_aidx = ut.make_index_lookup(unique_aids)
     prob_annots = np.zeros((len(unique_aids), len(unique_aids)))
     for count, cm in enumerate(cm_list):
         idx = aid2_aidx[cm.qaid]
         annot_scores = ut.dict_take(cm.aid2_annot_score, unique_aids, 0)
         prob_annots[idx][:] = annot_scores
     prob_annots[np.diag_indices(len(prob_annots))] = np.inf
     prob_annots += 1E-9
     #print(ut.hz_str('prob_names = ', ut.array2string2(prob_names,
     #precision=2, max_line_width=140, suppress_small=True)))
     return unique_aids, prob_annots
Пример #2
0
 def make_prob_annots(infr):
     cm_list = infr.cm_list
     unique_aids = sorted(
         ut.list_union(*[cm.daid_list
                         for cm in cm_list] + [[cm.qaid
                                                for cm in cm_list]]))
     aid2_aidx = ut.make_index_lookup(unique_aids)
     prob_annots = np.zeros((len(unique_aids), len(unique_aids)))
     for count, cm in enumerate(cm_list):
         idx = aid2_aidx[cm.qaid]
         annot_scores = ut.dict_take(cm.aid2_annot_score, unique_aids, 0)
         prob_annots[idx][:] = annot_scores
     prob_annots[np.diag_indices(len(prob_annots))] = np.inf
     prob_annots += 1E-9
     #print(ut.hz_str('prob_names = ', ut.array2string2(prob_names,
     #precision=2, max_line_width=140, suppress_small=True)))
     return unique_aids, prob_annots
Пример #3
0
    def make_prob_names(self):
        cm_list = self.cm_list
        # Consolodate information from a series of chip matches
        unique_nids = sorted(ut.list_union(*[cm.unique_nids for cm in cm_list]))
        # nid2_nidx = ut.make_index_lookup(unique_nids)
        # Populate matrix of raw name scores
        prob_names = np.zeros((len(cm_list), len(unique_nids)))
        for count, cm in enumerate(cm_list):
            try:
                name_scores = ut.dict_take(cm.nid2_name_score, unique_nids, 0)
            except AttributeError:
                unique_nidxs = ut.take(cm.nid2_nidx, unique_nids)
                name_scores = ut.take(cm.name_score_list, unique_nidxs)
            prob_names[count][:] = name_scores

        # Normalize to row stochastic matrix
        prob_names /= prob_names.sum(axis=1)[:, None]
        # logger.info(ut.hz_str('prob_names = ', ut.repr2(prob_names,
        # precision=2, max_line_width=140, suppress_small=True)))
        return unique_nids, prob_names
Пример #4
0
    def make_prob_names(infr):
        cm_list = infr.cm_list
        # Consolodate information from a series of chip matches
        unique_nids = sorted(ut.list_union(*[cm.unique_nids for cm in cm_list]))
        #nid2_nidx = ut.make_index_lookup(unique_nids)
        # Populate matrix of raw name scores
        prob_names = np.zeros((len(cm_list), len(unique_nids)))
        for count, cm in enumerate(cm_list):
            try:
                name_scores = ut.dict_take(cm.nid2_name_score, unique_nids, 0)
            except AttributeError:
                unique_nidxs = ut.take(cm.nid2_nidx, unique_nids)
                name_scores = ut.take(cm.name_score_list, unique_nidxs)
            prob_names[count][:] = name_scores

        # Normalize to row stochastic matrix
        prob_names /= prob_names.sum(axis=1)[:, None]
        #print(ut.hz_str('prob_names = ', ut.array2string2(prob_names,
        #precision=2, max_line_width=140, suppress_small=True)))
        return unique_nids, prob_names
Пример #5
0
    def initialize_graph_and_model(infr):
        """ Unused in internal split stuff

        pt.qt4ensure()
        layout_info = pt.show_nx(graph, as_directed=False, fnum=1,
                                 layoutkw=dict(prog='neato'), use_image=True,
                                 verbose=0)
        ax = pt.gca()
        pt.zoom_factory()
        pt.interactions.PanEvents()
        """
        #import networkx as nx
        #import itertools
        cm_list = infr.cm_list
        hack = True
        hack = False
        if hack:
            cm_list = cm_list[:10]
        qaid_list = [cm.qaid for cm in cm_list]
        daids_list = [cm.daid_list for cm in cm_list]
        unique_aids = sorted(ut.list_union(*daids_list + [qaid_list]))
        if hack:
            unique_aids = sorted(ut.isect(unique_aids, qaid_list))
        aid2_aidx = ut.make_index_lookup(unique_aids)

        # Construct K-broken graph
        edges = []
        edge_weights = []
        #top = (infr.qreq_.qparams.K + 1) * 2
        #top = (infr.qreq_.qparams.K) * 2
        top = (infr.qreq_.qparams.K + 2)
        for count, cm in enumerate(cm_list):
            qidx = aid2_aidx[cm.qaid]
            score_list = cm.annot_score_list
            sortx = ut.argsort(score_list)[::-1]
            score_list = ut.take(score_list, sortx)[:top]
            daid_list = ut.take(cm.daid_list, sortx)[:top]
            for score, daid in zip(score_list, daid_list):
                if daid not in qaid_list:
                    continue
                didx = aid2_aidx[daid]
                edge_weights.append(score)
                edges.append((qidx, didx))

        # make symmetric
        directed_edges = dict(zip(edges, edge_weights))
        # Find edges that point in both directions
        undirected_edges = {}
        for (u, v), w in directed_edges.items():
            if (v, u) in undirected_edges:
                undirected_edges[(v, u)] += w
                undirected_edges[(v, u)] /= 2
            else:
                undirected_edges[(u, v)] = w

        edges = list(undirected_edges.keys())
        edge_weights = list(undirected_edges.values())
        nodes = list(range(len(unique_aids)))

        nid_labeling = infr.qreq_.ibs.get_annot_nids(unique_aids)
        labeling = ut.rebase_labels(nid_labeling)

        import networkx as nx
        from ibeis.viz import viz_graph
        set_node_attrs = nx.set_node_attributes
        set_edge_attrs = nx.set_edge_attributes

        # Create match-based graph structure
        graph = nx.DiGraph()
        graph.add_nodes_from(nodes)
        graph.add_edges_from(edges)

        # Important properties
        nid_list = infr.qreq_.ibs.get_annot_nids(unique_aids)
        labeling = ut.rebase_labels(nid_list)

        set_node_attrs(graph, 'name_label', dict(zip(nodes, labeling)))
        set_edge_attrs(graph, 'weight', dict(zip(edges, edge_weights)))

        # Visualization properties
        import plottool as pt
        ax2_aid = ut.invert_dict(aid2_aidx)
        set_node_attrs(graph, 'aid', ax2_aid)
        viz_graph.ensure_node_images(infr.qreq_.ibs, graph)
        set_node_attrs(graph, 'framewidth', dict(zip(nodes,
                                                     [3.0] * len(nodes))))
        set_node_attrs(graph, 'framecolor',
                       dict(zip(nodes, [pt.DARK_BLUE] * len(nodes))))
        ut.color_nodes(graph, labelattr='name_label')

        edge_colors = pt.scores_to_color(np.array(edge_weights),
                                         cmap_='viridis')
        #import utool
        #utool.embed()
        #edge_colors = [pt.color_funcs.ensure_base255(color) for color in edge_colors]
        #print('edge_colors = %r' % (edge_colors,))
        set_edge_attrs(graph, 'color', dict(zip(edges, edge_colors)))

        # Build inference model
        from ibeis.algo.hots import graph_iden
        #graph_iden.rrr()
        model = graph_iden.InfrModel(graph)
        #model = graph_iden.InfrModel(len(nodes), edges, edge_weights, labeling=labeling)
        infr.model = model
Пример #6
0
    def initialize_graph_and_model(infr):
        """ Unused in internal split stuff

        pt.qt4ensure()
        layout_info = pt.show_nx(graph, as_directed=False, fnum=1,
                                 layoutkw=dict(prog='neato'), use_image=True,
                                 verbose=0)
        ax = pt.gca()
        pt.zoom_factory()
        pt.interactions.PanEvents()
        """
        #import networkx as nx
        #import itertools
        cm_list = infr.cm_list
        hack = True
        hack = False
        if hack:
            cm_list = cm_list[:10]
        qaid_list = [cm.qaid for cm in cm_list]
        daids_list = [cm.daid_list for cm in cm_list]
        unique_aids = sorted(ut.list_union(*daids_list + [qaid_list]))
        if hack:
            unique_aids = sorted(ut.isect(unique_aids, qaid_list))
        aid2_aidx = ut.make_index_lookup(unique_aids)

        # Construct K-broken graph
        edges = []
        edge_weights = []
        #top = (infr.qreq_.qparams.K + 1) * 2
        #top = (infr.qreq_.qparams.K) * 2
        top = (infr.qreq_.qparams.K + 2)
        for count, cm in enumerate(cm_list):
            qidx = aid2_aidx[cm.qaid]
            score_list = cm.annot_score_list
            sortx = ut.argsort(score_list)[::-1]
            score_list = ut.take(score_list, sortx)[:top]
            daid_list = ut.take(cm.daid_list, sortx)[:top]
            for score, daid in zip(score_list, daid_list):
                if daid not in qaid_list:
                    continue
                didx = aid2_aidx[daid]
                edge_weights.append(score)
                edges.append((qidx, didx))

        # make symmetric
        directed_edges = dict(zip(edges, edge_weights))
        # Find edges that point in both directions
        undirected_edges = {}
        for (u, v), w in directed_edges.items():
            if (v, u) in undirected_edges:
                undirected_edges[(v, u)] += w
                undirected_edges[(v, u)] /= 2
            else:
                undirected_edges[(u, v)] = w

        edges = list(undirected_edges.keys())
        edge_weights = list(undirected_edges.values())
        nodes = list(range(len(unique_aids)))

        nid_labeling = infr.qreq_.ibs.get_annot_nids(unique_aids)
        labeling = ut.rebase_labels(nid_labeling)

        import networkx as nx
        from ibeis.viz import viz_graph
        set_node_attrs = nx.set_node_attributes
        set_edge_attrs = nx.set_edge_attributes

        # Create match-based graph structure
        graph = nx.DiGraph()
        graph.add_nodes_from(nodes)
        graph.add_edges_from(edges)

        # Important properties
        nid_list = infr.qreq_.ibs.get_annot_nids(unique_aids)
        labeling = ut.rebase_labels(nid_list)

        set_node_attrs(graph, 'name_label', dict(zip(nodes, labeling)))
        set_edge_attrs(graph, 'weight', dict(zip(edges, edge_weights)))

        # Visualization properties
        import plottool as pt
        ax2_aid = ut.invert_dict(aid2_aidx)
        set_node_attrs(graph, 'aid', ax2_aid)
        viz_graph.ensure_node_images(infr.qreq_.ibs, graph)
        set_node_attrs(graph, 'framewidth', dict(zip(nodes, [3.0] * len(nodes))))
        set_node_attrs(graph, 'framecolor', dict(zip(nodes, [pt.DARK_BLUE] * len(nodes))))
        ut.color_nodes(graph, labelattr='name_label')

        edge_colors = pt.scores_to_color(np.array(edge_weights), cmap_='viridis')
        #import utool
        #utool.embed()
        #edge_colors = [pt.color_funcs.ensure_base255(color) for color in edge_colors]
        #print('edge_colors = %r' % (edge_colors,))
        set_edge_attrs(graph, 'color', dict(zip(edges, edge_colors)))

        # Build inference model
        from ibeis.algo.hots import graph_iden
        #graph_iden.rrr()
        model = graph_iden.InfrModel(graph)
        #model = graph_iden.InfrModel(len(nodes), edges, edge_weights, labeling=labeling)
        infr.model = model