Пример #1
0
    def _get_gabor_filters(self, params):
        """ Return a Gabor filterbank (generate it if needed)
            
        Inputs:
          params -- filters parameters (dict)

        Outputs:
          filt_l -- filterbank (list)

        """

        if self._filt_l is None:        
            # -- get parameters
            fh, fw = params['kshape']
            orients = params['orients']
            freqs = params['freqs']
            phases = params['phases']
            nf =  len(orients) * len(freqs) * len(phases)
            fbshape = nf, fh, fw
            gsw = fw/5.
            gsh = fw/5.
            xc = fw/2
            yc = fh/2
            filt_l = []

            # -- build the filterbank
            for freq in freqs:
                for orient in orients:
                    for phase in phases:
                        # create 2d gabor
                        filt = v1s_math.gabor2d(gsw,gsh,
                                       xc,yc,
                                       freq,orient,phase,
                                       (fw,fh))

                        # vectors for separable convolution
                        U,S,V = v1s_math.fastsvd(filt)
                        tot = 0
                        vectors = []
                        idx = 0
                        S **= 2.
                        while tot <= params['sep_threshold']:
                            row = (U[:,idx]*S[idx])[:, newaxis]
                            col = (V[idx,:])[newaxis, :]
                            vectors += [(row,col)]
                            tot += S[idx]/S.sum()
                            idx += 1                             

                        filt_l += [vectors]

            self._filt_l = filt_l
            
        return self._filt_l
Пример #2
0
 def _dimr(self,fvectors,pca_threshold):
 
     # -- Reduce dimensionality using a pca / eigen subspace projection
     nvectors, vsize = fvectors.shape        
     if nvectors < vsize:
         print "pca...", 
         print fvectors.shape, "=>", 
         U,S,V = v1s_math.fastsvd(fvectors)
         eigvectors = V.T
         i = tot = 0
         S **= 2.
         while (tot <= pca_threshold) and (i < S.size):
             tot += S[i]/S.sum()
             i += 1
         eigvectors = eigvectors[:, :i+1]
         fvectors = scipy.dot(fvectors, eigvectors)
    
     return fvectors, eigvectors