Пример #1
0
def main(args):
    exec_time = datetime.now().strftime('%Y%m%d-%H%M%S')
    tensorboard = TensorBoard(log_dir=f'log/vae/{exec_time}',
                              update_freq='batch')

    new_model = args.new_model
    epochs = int(args.epochs)
    steps = int(args.steps)

    # instantiate VAE
    vae = VAE() if new_model else load_vae(WEIGHT_FILE_NAME)

    # get training set and validation set generators
    t_gen, v_gen = get_generators(INPUT_DIR_NAME, TV_RATIO)

    # start training!
    vae.train(t_gen,
              v_gen,
              epochs=epochs,
              steps_per_epoch=steps,
              validation_steps=int(steps * TV_RATIO),
              workers=10,
              callbacks=[tensorboard])

    # save model weights
    vae.save_weights(WEIGHT_FILE_NAME)
Пример #2
0
def main(args):

    new_model = args.new_model
    N = int(args.N)
    epochs = int(args.epochs)

    vae = VAE()

    if not new_model:
        try:
            vae.set_weights('./vae/weights.h5')
        except:
            print("Either set --new_model or ensure ./vae/weights.h5 exists")
            raise

    try:
        data, N = import_data(N)
    except:
        print('NO DATA FOUND')
        raise

    print('DATA SHAPE = {}'.format(data.shape))

    for epoch in range(epochs):
        print('EPOCH ' + str(epoch))
        vae.train(data)
        vae.save_weights('./vae/weights.h5')
Пример #3
0
def main(args):

    new_model = args.new_model
    S = int(args.S)
    N = int(args.N)
    batch = int(args.batch)
    model_name = str(args.model_name)
    print(args.alpha)
    alpha = float(args.alpha)
    vae = VAE()

    if not new_model:
        try:
            vae.set_weights('./vae/' + model_name + '/' + model_name +
                            '_weights.h5')

        except:
            print("Either set --new_model or ensure ./vae/weights.h5 exists")
            raise
    else:
        if os.path.isdir('./vae/' + model_name):
            print("A model with this name already exists")
        else:
            os.mkdir('./vae/' + model_name)
            os.mkdir('./vae/' + model_name + '/log/')

    filelist = os.listdir(DIR_NAME)
    filelist = [x for x in filelist if x != '.DS_Store' and x != '.gitignore']
    filelist.sort()

    for i in range(round(float(N - S) / batch)):
        data = import_data(S + i * batch, S + (i + 1) * batch, filelist)
        dataS = []
        dataB = []
        for d in data:
            beta = alpha + np.random.rand() * (1 - alpha)
            dataS.append(
                cv2.resize(crop(d, alpha * beta),
                           dsize=(SCREEN_SIZE_X, SCREEN_SIZE_Y),
                           interpolation=cv2.INTER_CUBIC))
            dataB.append(
                cv2.resize(crop(d, beta),
                           dsize=(SCREEN_SIZE_X, SCREEN_SIZE_Y),
                           interpolation=cv2.INTER_CUBIC))

        dataS = np.asarray(dataS)
        dataB = np.asarray(dataB)

        vae.train(dataS, dataB, model_name
                  )  # uncomment this to train augmenting VAE, simple RNN (2)
        #vae.train(np.vstack([dataS, dataB]), np.vstack([dataS, dataB]), model_name) # uncomment this to train simple VAE, RNN (1)

        vae.save_weights('./vae/' + model_name + '/' + model_name +
                         '_weights.h5')

        print('Imported {} / {}'.format(S + (i + 1) * batch, N))
def main(args):

    new_model = args.new_model
    S = int(args.S)
    N = int(args.N)
    batch = int(args.batch)
    epochs = int(args.epochs)
    model_name = str(args.model_name)

    vae = VAE()

    if not new_model:
        try:
            vae.set_weights('./vae/' + model_name + '_weights.h5')
        except:
            print("Either set --new_model or ensure ./vae/" + model_name +
                  "_weights.h5 exists")
            raise
    elif not os.path.isdir('./vae/' + model_name):
        os.mkdir('./vae/' + model_name)
        os.mkdir('./vae/' + model_name + '/log/')

    filelist = os.listdir(DIR_NAME + model_name)
    filelist = [x for x in filelist if x != '.DS_Store' and x != '.gitignore']
    filelist.sort()
    N = max(N, len(filelist))

    for i in range(int(round(float(N - S) / batch) + 1)):
        dataS, dataB = import_data(S + i * batch, S + (i + 1) * batch,
                                   filelist, model_name)
        for epoch in range(epochs):
            vae.train(
                dataS, dataB, model_name
            )  # uncomment this to train augmenting VAE, simple RNN (2)
            #vae.train(np.vstack([dataS, dataB]), np.vstack([dataS, dataB]), model_name) # uncomment this to train simple VAE, RNN (1)
        vae.save_weights('./vae/' + model_name + '/' + model_name +
                         '_weights.h5')

        print('Imported {} / {}'.format(S + (i + 1) * batch, N))