reset_graph()

# Creating the VAE model as an object of the ConvVAE class

vae = ConvVAE(z_size=z_size,
              batch_size=batch_size,
              learning_rate=learning_rate,
              kl_tolerance=kl_tolerance,
              is_training=False,
              reuse=False,
              gpu_mode=True)

# Loading the weights of the VAE model

vae.load_json(os.path.join(model_path_name, 'vae.json'))

# Running the main code that generates the data from the VAE model for the MDN-RNN model

mu_dataset = []
logvar_dataset = []
for i in range(len(dataset)):
    data_batch = dataset[i]
    mu, logvar, z = encode_batch(data_batch)
    mu_dataset.append(mu.astype(np.float16))
    logvar_dataset.append(logvar.astype(np.float16))
    if ((i + 1) % 100 == 0):
        print(i + 1)
action_dataset = np.array(action_dataset)
mu_dataset = np.array(mu_dataset)
logvar_dataset = np.array(logvar_dataset)
Пример #2
0
class Model:
    ''' simple one layer model for car racing '''
    def __init__(self, load_model=True):
        self.env_name = "carracing"
        self.vae = ConvVAE(batch_size=1,
                           gpu_mode=False,
                           is_training=False,
                           reuse=True)

        self.rnn = MDNRNN(hps_sample, gpu_mode=False, reuse=True)

        if load_model:
            self.vae.load_json('vae/vae.json')
            self.rnn.load_json('rnn/rnn.json')

        self.state = rnn_init_state(self.rnn)
        self.rnn_mode = True

        self.input_size = rnn_output_size(EXP_MODE)
        self.z_size = 32

        if EXP_MODE == MODE_Z_HIDDEN:  # one hidden layer
            self.hidden_size = 40
            self.weight_hidden = np.random.randn(self.input_size,
                                                 self.hidden_size)
            self.bias_hidden = np.random.randn(self.hidden_size)
            self.weight_output = np.random.randn(self.hidden_size, 3)
            self.bias_output = np.random.randn(3)
            self.param_count = ((self.input_size + 1) *
                                self.hidden_size) + (self.hidden_size * 3 + 3)
        else:
            self.weight = np.random.randn(self.input_size, 3)
            self.bias = np.random.randn(3)
            self.param_count = (self.input_size) * 3 + 3

        self.render_mode = False

    def make_env(self, seed=-1, render_mode=False, full_episode=False):
        self.render_mode = render_mode
        self.env = make_env(self.env_name,
                            seed=seed,
                            render_mode=render_mode,
                            full_episode=full_episode)

    def reset(self):
        self.state = rnn_init_state(self.rnn)

    def encode_obs(self, obs):
        # convert raw obs to z, mu, logvar
        result = np.copy(obs).astype(np.float) / 255.0
        result = result.reshape(1, 96, 96, 3)
        mu, logvar = self.vae.encode_mu_logvar(result)
        mu = mu[0]
        logvar = logvar[0]
        s = logvar.shape
        z = mu + np.exp(logvar / 2.0) * np.random.randn(*s)
        return z, mu, logvar

    def get_action(self, z):
        h = rnn_output(self.state, z, EXP_MODE)
        '''
    action = np.dot(h, self.weight) + self.bias
    action[0] = np.tanh(action[0])
    action[1] = sigmoid(action[1])
    action[2] = clip(np.tanh(action[2]))
    '''
        if EXP_MODE == MODE_Z_HIDDEN:  # one hidden layer
            h = np.tanh(np.dot(h, self.weight_hidden) + self.bias_hidden)
            action = np.tanh(np.dot(h, self.weight_output) + self.bias_output)
        else:
            action = np.tanh(np.dot(h, self.weight) + self.bias)

        action[1] = (action[1] + 1.0) / 2.0
        action[2] = clip(action[2])

        self.state = rnn_next_state(self.rnn, z, action, self.state)

        return action

    def set_model_params(self, model_params):
        if EXP_MODE == MODE_Z_HIDDEN:  # one hidden layer
            params = np.array(model_params)
            cut_off = (self.input_size + 1) * self.hidden_size
            params_1 = params[:cut_off]
            params_2 = params[cut_off:]
            self.bias_hidden = params_1[:self.hidden_size]
            self.weight_hidden = params_1[self.hidden_size:].reshape(
                self.input_size, self.hidden_size)
            self.bias_output = params_2[:3]
            self.weight_output = params_2[3:].reshape(self.hidden_size, 3)
        else:
            self.bias = np.array(model_params[:3])
            self.weight = np.array(model_params[3:]).reshape(
                self.input_size, 3)

    def load_model(self, filename):
        with open(filename) as f:
            data = json.load(f)
        print('loading file %s' % (filename))
        self.data = data
        model_params = np.array(data[0])  # assuming other stuff is in data
        self.set_model_params(model_params)

    def get_random_model_params(self, stdev=0.1):
        #return np.random.randn(self.param_count)*stdev
        return np.random.standard_cauchy(
            self.param_count) * stdev  # spice things up

    def init_random_model_params(self, stdev=0.1):
        params = self.get_random_model_params(stdev=stdev)
        self.set_model_params(params)
        vae_params = self.vae.get_random_model_params(stdev=stdev)
        self.vae.set_model_params(vae_params)
        rnn_params = self.rnn.get_random_model_params(stdev=stdev)
        self.rnn.set_model_params(rnn_params)
Пример #3
0
class Model:

    # Initializing all the parameters and variables of the Model class
    def __init__(self, load_model=True):
        self.env_name = "carracing"
        self.vae = ConvVAE(batch_size=1,
                           gpu_mode=False,
                           is_training=False,
                           reuse=True)
        self.rnn = MDNRNN(hps_sample, gpu_mode=False, reuse=True)
        if load_model:
            self.vae.load_json('Weights/vae_weights.json')
            self.rnn.load_json('Weights/rnn_weights.json')
        self.state = rnn_init_state(self.rnn)
        self.rnn_mode = True
        self.input_size = rnn_output_size(EXP_MODE)
        self.z_size = 32
        if EXP_MODE == MODE_Z_HIDDEN:
            self.hidden_size = 40
            self.weight_hidden = np.random.randn(self.input_size,
                                                 self.hidden_size)
            self.bias_hidden = np.random.randn(self.hidden_size)
            self.weight_output = np.random.randn(self.hidden_size, 3)
            self.bias_output = np.random.randn(3)
            self.param_count = ((self.input_size + 1) *
                                self.hidden_size) + (self.hidden_size * 3 + 3)
        else:
            self.weight = np.random.randn(self.input_size, 3)
            self.bias = np.random.randn(3)
            self.param_count = (self.input_size) * 3 + 3
        self.render_mode = False

    # Making a method that creates an environment (in our case the CarRacing game) inside which both the AI and HI will play
    def make_env(self, seed=-1, render_mode=False, full_episode=False):
        self.render_mode = render_mode
        self.env = make_env(self.env_name,
                            seed=seed,
                            render_mode=render_mode,
                            full_episode=full_episode)

    # Making a method that reinitiates the states for the RNN model
    def reset(self):
        self.state = rnn_init_state(self.rnn)

    # Making a method that encodes the observations (input frames)
    def encode_obs(self, obs):
        result = np.copy(obs).astype(np.float) / 255.0
        result = result.reshape(1, 64, 64, 3)
        mu, logvar = self.vae.encode_mu_logvar(result)
        mu = mu[0]
        logvar = logvar[0]
        s = logvar.shape
        z = mu + np.exp(logvar / 2.0) * np.random.randn(*s)
        return z, mu, logvar

    # Making a method that samples an action based on the latent vector z
    def get_action(self, z):
        h = rnn_output(self.state, z, EXP_MODE)
        if EXP_MODE == MODE_Z_HIDDEN:
            h = np.tanh(np.dot(h, self.weight_hidden) + self.bias_hidden)
            action = np.tanh(np.dot(h, self.weight_output) + self.bias_output)
        else:
            action = np.tanh(np.dot(h, self.weight) + self.bias)
        action[1] = (action[1] + 1.0) / 2.0
        action[2] = clip(action[2])
        self.state = rnn_next_state(self.rnn, z, action, self.state)
        return action

    # Making a method that sets the initialized/loaded weights into the model
    def set_model_params(self, model_params):
        if EXP_MODE == MODE_Z_HIDDEN:
            params = np.array(model_params)
            cut_off = (self.input_size + 1) * self.hidden_size
            params_1 = params[:cut_off]
            params_2 = params[cut_off:]
            self.bias_hidden = params_1[:self.hidden_size]
            self.weight_hidden = params_1[self.hidden_size:].reshape(
                self.input_size, self.hidden_size)
            self.bias_output = params_2[:3]
            self.weight_output = params_2[3:].reshape(self.hidden_size, 3)
        else:
            self.bias = np.array(model_params[:3])
            self.weight = np.array(model_params[3:]).reshape(
                self.input_size, 3)

    # Making a method that loads the model weights
    def load_model(self, filename):
        with open(filename) as f:
            data = json.load(f)
        print('loading file %s' % (filename))
        self.data = data
        model_params = np.array(data[0])
        self.set_model_params(model_params)

    # Making a method that randomly initializes the weights
    def get_random_model_params(self, stdev=0.1):
        return np.random.standard_cauchy(self.param_count) * stdev

    # Making a method that randomly initializes the weights for all 3 parts of the Full World Model (VAE, RNN, Controller)
    def init_random_model_params(self, stdev=0.1):
        params = self.get_random_model_params(stdev=stdev)
        self.set_model_params(params)
        vae_params = self.vae.get_random_model_params(stdev=stdev)
        self.vae.set_model_params(vae_params)
        rnn_params = self.rnn.get_random_model_params(stdev=stdev)
        self.rnn.set_model_params(rnn_params)
Пример #4
0
    print("batch_size {}".format(batch_size))
    print("crop_size {}".format(crop_size))

    cv2.imshow("crop",crops[0])
    cv2.waitKey(0)

    reset_graph()
    test_vae = ConvVAE(z_size=z_size,
                       batch_size=batch_size,
                       is_training=False,
                       reuse=False,
                       gpu_mode=True)

    # show reconstruction example
    test_vae.load_json("../../models/0/vae_{}.json".format(180000))
    z = test_vae.encode(crops)
    print(z.shape)

    rec = test_vae.decode(z)
    print(rec.shape)

    np.save("../../output/z_{}.npy".format(batch_size), z)
    np.save("../../output/rec_{}.npy".format(batch_size), rec)

    #for img_idx, img in enumerate(test_batch):
    vis = np.concatenate((crops[0], rec[0]), axis=1)
    cv2.imshow("org vs. rec",cv2.resize(vis,(0,0),fx=4.0,fy=4.0))

    key = cv2.waitKey(0) & 0xFF