def __init__(self, pipeline_id, do_prep='True', prep_dict=None): self.pid = pipeline_id self.do_prep = do_prep == 'True' self.cat_idx = None self.float_idx = None self.prep_dict = prep_dict BaseHelper.__init__(self)
def __init__(self, pipeline_id=None, do_prep='True', prep_dict={'impute_strategy': 'impute_knn5'}, gridpoints=4, inner_cv=None, groupcount=None, impute_strategy=None, float_idx=None, cat_idx=None, bestT=False, cv_splits=5, cv_repeats=2): self.pipeline_id = pipeline_id self.do_prep = do_prep == 'True' if type(do_prep) != bool else do_prep self.gridpoints = gridpoints self.inner_cv = inner_cv self.groupcount = groupcount self.bestT = bestT self.cat_idx = cat_idx self.float_idx = float_idx self.prep_dict = prep_dict self.cv_splits = cv_splits self.cv_repeats = cv_repeats self.impute_strategy = impute_strategy if impute_strategy: self.prep_dict["impute_strategy"] = self.impute_strategy BaseHelper.__init__(self)
def __init__(self, pipeline_id=None, do_prep='True', functional_form_search="False", prep_dict={'impute_strategy': 'impute_knn5'}, gridpoints=4, inner_cv=None, groupcount=None, bestT=False, cat_idx=None, float_idx=None, flex_kwargs={}, cv_splits=5, cv_repeats=2): self.pipeline_id = pipeline_id self.do_prep = do_prep == 'True' if type(do_prep) != bool else do_prep self.functional_form_search = functional_form_search if type( functional_form_search ) == bool else functional_form_search == "True" self.gridpoints = gridpoints self.inner_cv = inner_cv self.groupcount = groupcount self.bestT = bestT self.cat_idx = cat_idx self.float_idx = float_idx self.prep_dict = prep_dict self.flex_kwargs = flex_kwargs self.cv_splits = cv_splits self.cv_repeats = cv_repeats self.flex_kwargs["robust"] = True BaseHelper.__init__(self)
def __init__(self, pipeline_id=None, do_prep=True, prep_dict={'impute_strategy': 'impute_knn5'}, inner_cv=None, bestT=False, cat_idx=None, float_idx=None, est_kwargs=None, cv_splits=5, cv_repeats=2): self.pipeline_id = pipeline_id self.do_prep = do_prep == 'True' if type(do_prep) != bool else do_prep self.bestT = bestT self.cat_idx = cat_idx self.float_idx = float_idx self.inner_cv = inner_cv self.prep_dict = prep_dict self.est_kwargs = est_kwargs self.cv_splits = cv_splits self.cv_repeats = cv_repeats # self.impute_strategy = impute_strategy # if impute_strategy: # self.prep_dict["impute_strategy"] = self.impute_strategy BaseHelper.__init__(self)
def __init__(self, pipeline_id=None, do_prep='True', prep_dict=None): self.pipeline_id = pipeline_id self.do_prep = do_prep == 'True' if type(do_prep) != bool else do_prep self.cat_idx = None self.float_idx = None self.prep_dict = prep_dict BaseHelper.__init__(self)
def __init__(self, pipeline_id, do_prep='True', prep_dict=None, impute_strategy=None, gridpoints=4, inner_cv=None, groupcount=None, float_idx=None, cat_idx=None, bestT=False): self.pid = pipeline_id self.do_prep = do_prep == 'True' self.gridpoints = gridpoints self.groupcount = groupcount self.float_idx = float_idx self.cat_idx = cat_idx self.bestT = bestT self.inner_cv = inner_cv self.prep_dict = { 'impute_strategy': self.hyper_parameters["impute_strategy"]["value"] } if prep_dict is None else prep_dict if impute_strategy: self.prep_dict["impute_strategy"] = impute_strategy self.flags = None BaseHelper.__init__(self)
def __init__(self, pipeline_id, do_prep='True', prep_dict={'impute_strategy': 'impute_knn5'}, gridpoints=4, inner_cv=None, groupcount=None, impute_strategy=None, bestT=False, cat_idx=None, float_idx=None): self.pid = pipeline_id self.do_prep = do_prep == 'True' self.gridpoints = gridpoints self.inner_cv = inner_cv self.groupcount = groupcount self.bestT = bestT self.cat_idx = cat_idx self.float_idx = float_idx self.prep_dict = prep_dict if impute_strategy: self.prep_dict["impute_strategy"] = impute_strategy BaseHelper.__init__(self)
def __init__(self, pipeline_id, do_prep='True', functional_form_search=False, prep_dict={'impute_strategy': 'impute_knn5'}, gridpoints=4, inner_cv=None, groupcount=None, bestT=False, cat_idx=None, float_idx=None, flex_kwargs={}): self.pid = pipeline_id self.do_prep = do_prep == 'True' self.functional_form_search = functional_form_search self.gridpoints = gridpoints self.inner_cv = inner_cv self.groupcount = groupcount self.bestT = bestT self.cat_idx = cat_idx self.float_idx = float_idx self.prep_dict = prep_dict self.flex_kwargs = flex_kwargs BaseHelper.__init__(self)
def predict(self, features=None): train_idx_list, test_idx_list = zip(*list(self.get_cv().split(self.x, self.y))) n, k = self.x.shape data_idx = np.arange(n) yhat_dict = {} scores = {} for idx, (estimator_name, result) in enumerate(self.cv_results.items()): scores[estimator_name] = [] yhat_dict[estimator_name] = [] for r in range(self.cv_reps): yhat = np.empty([n, ]) rows = [] for s in range(self.cv_folds): # s for split m = r*self.cv_folds+s cv_est = result['estimator'][m] test_rows = test_idx_list[m] yhat[test_rows] = cv_est.predict(self.x.iloc[test_rows]) rows.append(BaseHelper.score(self.y[test_rows], yhat[test_rows])) scores[estimator_name].append(rows) yhat_dict[estimator_name].append(yhat) self.cv_yhat_dict = yhat_dict return yhat_dict, scores