Пример #1
0
def main():
    start_time = time.time()
    paths = vcoco_config.Paths()
    paths.eval_root = '/home/siyuan/projects/papers/cvpr2018/tmp/evaluation/vcoco/features'
    if not os.path.exists(paths.eval_root):
        os.makedirs(paths.eval_root)
    collect_data(paths)
    print('Time elapsed: {:.2f}s'.format(time.time() - start_time))
Пример #2
0
def main():
    start_time = time.time()
    paths = vcoco_config.Paths()
    paths.eval_root = 'evaluation/vcoco/features'
    if not os.path.exists(paths.eval_root):
        os.makedirs(paths.eval_root)
    collect_data(paths)
    print('Time elapsed: {:.2f}s'.format(time.time() - start_time))
Пример #3
0
def parse_arguments():
    paths = vcoco_config.Paths()
    feature_type = 'resnet'

    parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
    parser.add_argument('--feature-type', default=feature_type, help='feature_type')
    parser.add_argument('--data', metavar='DIR', default=paths.data_root, help='path to dataset')
    parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
                        help='number of data loading workers (default: 4)')
    parser.add_argument('--epochs', default=100, type=int, metavar='N',
                        help='number of total epochs to run')
    parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
                        help='manual epoch number (useful on restarts)')
    parser.add_argument('-b', '--batch-size', default=32, type=int,
                        metavar='N', help='mini-batch size (default: 256)')
    parser.add_argument('--lr', '--learning-rate', default=5e-5, type=float,
                        metavar='LR', help='initial learning rate')
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--weight-decay', '--wd', default=1e-3, type=float,
                        metavar='W', help='weight decay (default: 1e-4)')
    parser.add_argument('--print-freq', '-p', default=30, type=int,
                        metavar='N', help='print frequency (default: 10)')
    parser.add_argument('--resume', default=os.path.join(paths.tmp_root, 'checkpoints/vcoco/finetune_{}'.format(feature_type)), type=str, metavar='PATH',
                        help='path to latest checkpoint (default: none)')
    parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
                        help='evaluate model on validation set')
    parser.add_argument('--pretrained', dest='pretrained', default=True, action='store_true',
                        help='use pre-trained model')
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
                        help='url used to set up distributed training')
    parser.add_argument('--dist-backend', default='gloo', type=str,
                        help='distributed backend')

    return parser.parse_args()
def main():
    paths = vcoco_config.Paths()
    imagesets = ['train', 'val', 'test']
    for imageset in imagesets:
        extract_features(paths, imageset)
Пример #5
0
def parse_arguments():
    paths = vcoco_config.Paths()
    parser = argparse.ArgumentParser(description='V-COCO dataset')
    parser.add_argument('--data-root', default=paths.data_root, help='dataset path')
    parser.add_argument('--tmp-root', default=paths.tmp_root, help='intermediate result path')
    return parser.parse_args()
Пример #6
0
def main():
    paths = vcoco_config.Paths()
    imagesets = ['test']
    for imageset in imagesets:
        plot_set(paths, imageset)