action='store_true') args = parser.parse_args() # Solucion "analitica" TbList = [0.9, 0.8, 0.7, 0.6] Sol = [] for i in range(args.n + 1): Sol.append( vdw.rhoNonUniformLambda(Tt=0.99, Tb=TbList[i], kappa=1.0, updateT=True, thcond='linear')) # Perfiles de densidad colorList = ['r', 'b', 'g', 'y'] mklist = ['o', 's', '^', '*'] sp = 15 with plt.style.context(('thesis_classic')): for i, mk in zip(range(args.n + 1), mklist):
# Argumentos de consola parser = argparse.ArgumentParser(description='Resolución de vdWColumn') parser.add_argument('-n', help='Rango de casos', type = int, default = 0) parser.add_argument('-png', help='Imagen en formato png', action='store_true') args = parser.parse_args() # Solucion "analitica" Sol = vdw.rhoNonUniformLambda( Tt = 0.99, Tb = 0.99, kappa = 1.0, updateT = False, thcond = 'linear' ) # Perfiles de densidad colorList = ['r', 'b', 'g', 'y'] mklist = ['o', 's', '^', '*'] gridList = [300.0, 600.0, 1200.0, 2400.0] lineList = ['-','--',':','-.'] sp = 15
parser.add_argument('-png', help='Imagen en formato png', action='store_true') args = parser.parse_args() # Solucion "analitica" TbList = [0.9, 0.8, 0.7, 0.6] Sol = [] for i in range( args.n + 1 ): Sol.append( vdw.rhoNonUniformLambda( Tt = 0.99, Tb = TbList[i], kappa = 1.0, updateT = False, thcond = 'linear' ) ) # Perfiles de densidad colorList = ['r', 'b', 'g', 'y'] mklist = ['o', 's', '^', '*'] sp = 15 with plt.style.context( ('thesis_classic') ):