def test_qrotate(self):
     v1 = np.array([[1,0,0],
                    [1,1,0]])
     v2 = np.array([[1,1,0],
                    [2,0,0]])
     
     correct = array([[ 0.,0.,0.38268343],
                      [ 0.,0.,-0.38268343]])
     self.assertTrue(np.all(np.abs(vector.q_shortest_rotation(v1,v2)-correct)<self.delta))
     
     correct = array([ 0.,0.,0.38268343])
     self.assertTrue(norm(vector.q_shortest_rotation(v1[0],v2[0])-correct)<self.delta)
Пример #2
0
    def test_qrotate(self):
        v1 = np.array([[1, 0, 0], [1, 1, 0]])
        v2 = np.array([[1, 1, 0], [2, 0, 0]])

        correct = array([[0., 0., 0.38268343], [0., 0., -0.38268343]])
        self.assertTrue(
            np.all(
                np.abs(vector.q_shortest_rotation(v1, v2) -
                       correct) < self.delta))

        correct = array([0., 0., 0.38268343])
        self.assertTrue(
            norm(vector.q_shortest_rotation(v1[0], v2[0]) -
                 correct) < self.delta)
Пример #3
0
def analytical(R_initialOrientation=np.eye(3),
               omega=np.zeros((5, 3)),
               initialPosition=np.zeros(3),
               accMeasured=np.column_stack((np.zeros((5, 2)), g * np.ones(5))),
               rate=128):

    ####################################################################################
    #                                                                                  #
    #  github.com/thomas-haslwanter/scikit-kinematics/blob/master/skinematics/imus.py  #
    #  Analytically reconstructing accmtr. position and orientation, using angular     #
    #  velocity and linear acceleration. Assumes a start in a stationary position.     #
    #  Needs auxiliary libraries - quat.py, vector.py, rotmat.py.                      #
    #  Parameters                                                                      #
    #  ------------------------------------------------------------------------------  #
    #  R_initialOrientation : ndarray(3,3) --------- Rotation matrix describing        #
    #  the sensor's initial orientation, except for a mis-orientation w/rt gravity.    #
    #  omega : ndarray(N,3) ------------------------ Angular velocity, in [rad/s]      #
    #  initialPosition : ndarray(3,) --------------- Initial position, in [m]          #
    #  accMeasured : ndarray(N,3) ------------------ Linear acceleration, in [m/s^2]   #
    #  rate : float -------------------------------- Sampling rate, in [Hz]            #
    #  Returns                                                                         #
    #  ------------------------------------------------------------------------------  #
    #  q : ndarray(N,3) ---------------------------- Orientation - quaternion vector   #
    #  pos : ndarray(N,3) -------------------------- Position in space [m]             #
    #  vel : ndarray(N,3) -------------------------- Velocity in space [m/s]           #
    #                                                                                  #
    ####################################################################################

    # Transform recordings to angVel/acceleration in space -------------------------
    # ----- Find gravity's orientation on the sensor in "R_initialOrientation" -----
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0, 0, g])
    # ----- For the remaining deviation, assume the shortest rotation to there. ----
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)
    q_initial = rotmat.convert(R_initialOrientation, to='quat')
    # ----- Combine the two to form a reference orientation. -----------------------
    q_ref = quat.q_mult(q_initial, q0)

    # Compute orientation q by "integrating" omega ---------------------------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position -----------------------------------------
    # ----- Using q and the measured acceleration, get the \frac{d^2x}{dt^2} -------
    g_v = np.r_[0, 0, g]
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)
    # ----- Make the first position the reference position -------------------------
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # Done. ------------------------------------------------------------------------
    return q
Пример #4
0
def analytical(
        R_initialOrientation=np.eye(3),
        omega=np.zeros((5, 3)),
        initialPosition=np.zeros(3),
        accMeasured=np.column_stack((np.zeros((5, 2)), 9.81 * np.ones(5))),
        rate=100):
    ''' Reconstruct position and orientation with an analytical solution,
    from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]
    vel : ndarray(N,3)
        Velocity in space [m/s]

    Example
    -------
     
    >>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = constants.g
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0, 0, g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)

    q_initial = rotmat.convert(R_initialOrientation, to='quat')

    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    q_ref = quat.q_mult(q_initial, q0)

    # Calculate orientation q by "integrating" omega -----------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = np.r_[0, 0, g]
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan * np.ones_like(accReSpace)
    pos = np.nan * np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:, ii] = cumtrapz(accReSpace[:, ii], dx=1. / rate, initial=0)
        pos[:, ii] = cumtrapz(vel[:, ii],
                              dx=1. / rate,
                              initial=initialPosition[ii])

    return (q, pos, vel)
Пример #5
0
def analytical(R_initialOrientation=np.eye(3),
               omega=np.zeros((5,3)),
               initialPosition=np.zeros(3),
               accMeasured=np.column_stack((np.zeros((5,2)), 9.81*np.ones(5))),
               rate=100):
    ''' Reconstruct position and orientation with an analytical solution,
    from angular velocity and linear acceleration.
    Assumes a start in a stationary position. No compensation for drift.

    Parameters
    ----------
    R_initialOrientation: ndarray(3,3)
        Rotation matrix describing the initial orientation of the sensor,
        except a mis-orienation with respect to gravity
    omega : ndarray(N,3)
        Angular velocity, in [rad/s]
    initialPosition : ndarray(3,)
        initial Position, in [m]
    accMeasured : ndarray(N,3)
        Linear acceleration, in [m/s^2]
    rate : float
        sampling rate, in [Hz]

    Returns
    -------
    q : ndarray(N,3)
        Orientation, expressed as a quaternion vector
    pos : ndarray(N,3)
        Position in space [m]
    vel : ndarray(N,3)
        Velocity in space [m/s]

    Example
    -------
     
    >>> q1, pos1 = analytical(R_initialOrientation, omega, initialPosition, acc, rate)

    '''

    # Transform recordings to angVel/acceleration in space --------------

    # Orientation of \vec{g} with the sensor in the "R_initialOrientation"
    g = constants.g
    g0 = np.linalg.inv(R_initialOrientation).dot(np.r_[0,0,g])

    # for the remaining deviation, assume the shortest rotation to there
    q0 = vector.q_shortest_rotation(accMeasured[0], g0)    
    
    q_initial = rotmat.convert(R_initialOrientation, to='quat')
    
    # combine the two, to form a reference orientation. Note that the sequence
    # is very important!
    q_ref = quat.q_mult(q_initial, q0)
    
    # Calculate orientation q by "integrating" omega -----------------
    q = quat.calc_quat(omega, q_ref, rate, 'bf')

    # Acceleration, velocity, and position ----------------------------
    # From q and the measured acceleration, get the \frac{d^2x}{dt^2}
    g_v = np.r_[0, 0, g] 
    accReSensor = accMeasured - vector.rotate_vector(g_v, quat.q_inv(q))
    accReSpace = vector.rotate_vector(accReSensor, q)

    # Make the first position the reference position
    q = quat.q_mult(q, quat.q_inv(q[0]))

    # compensate for drift
    #drift = np.mean(accReSpace, 0)
    #accReSpace -= drift*0.7

    # Position and Velocity through integration, assuming 0-velocity at t=0
    vel = np.nan*np.ones_like(accReSpace)
    pos = np.nan*np.ones_like(accReSpace)

    for ii in range(accReSpace.shape[1]):
        vel[:,ii] = cumtrapz(accReSpace[:,ii], dx=1./rate, initial=0)
        pos[:,ii] = cumtrapz(vel[:,ii],        dx=1./rate, initial=initialPosition[ii])

    return (q, pos, vel)