Пример #1
0
    def evaluate(self, test_structures, ref_energies, ref_forces,
                 ref_stresses):
        """
        Evaluate energies, forces and stresses of structures with trained
        interatomic potential.

        Args:
            test_structures ([Structure]): List of Pymatgen Structure Objects.
            ref_energies ([float]): List of DFT-calculated total energies of
                each structure in structures list.
            ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of
                each structure with m atoms in structures list. m can be varied
                with each single structure case.
            ref_stresses (list): List of DFT-calculated (6, ) viriral stresses
                of each structure in structures list.
        """
        predict_pool = pool_from(test_structures, ref_energies, ref_forces,
                                 ref_stresses)
        _, df_orig = convert_docs(predict_pool)

        _, df_predict = convert_docs(pool_from(test_structures))
        outputs = self.model.predict(inputs=test_structures, override=True)
        df_predict['y_orig'] = df_predict['n'] * outputs

        return df_orig, df_predict
Пример #2
0
    def evaluate(self,
                 test_structures,
                 ref_energies=None,
                 ref_forces=None,
                 ref_stresses=None,
                 predict_energies=True,
                 predict_forces=True,
                 predict_stress=False):
        """
        Evaluate energies, forces and stresses of structures with trained
        interatomic potential.

        Args:
            test_structures ([Structure]): List of Pymatgen Structure Objects.
            ref_energies ([float]): List of DFT-calculated total energies of
                each structure in structures list.
            ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of
                each structure with m atoms in structures list. m can be varied
                with each single structure case.
            ref_stresses (list): List of DFT-calculated (6, ) viriral stresses
                of each structure in structures list.
            predict_energies (bool): Whether to predict energies of configurations.
            predict_forces (bool): Whether to predict forces of configurations.
            predict_stress (bool): Whether to predict virial stress of
                configurations.
        """
        if not which('quip'):
            raise RuntimeError(
                "quip has not been found.\n",
                "Please refer to https://github.com/libAtoms/QUIP for ",
                "further detail.")
        xml_file = 'predict.xml'
        original_file = 'original.xyz'
        predict_file = 'predict.xyz'
        predict_pool = pool_from(test_structures, ref_energies, ref_forces,
                                 ref_stresses)

        with ScratchDir('.'):
            _ = self.write_param(xml_file)
            original_file = self.write_cfgs(original_file,
                                            cfg_pool=predict_pool)
            _, df_orig = self.read_cfgs(original_file)

            exe_command = ["quip"]
            exe_command.append("atoms_filename={}".format(original_file))
            exe_command.append("param_filename={}".format(xml_file))
            if predict_energies:
                exe_command.append("energy=T")
            if predict_forces:
                exe_command.append("forces=T")
            if predict_stress:
                exe_command.append("virial=T")

            p = subprocess.Popen(exe_command, stdout=open(predict_file, 'w'))
            stdout = p.communicate()[0]
            rc = p.returncode

            _, df_predict = self.read_cfgs(predict_file, predict=True)

        return df_orig, df_predict
Пример #3
0
    def evaluate(self, test_structures, ref_energies, ref_forces,
                 ref_stresses):
        """
        Evaluate energies, forces and stresses of structures with trained
        interatomic potential.

        Args:
            test_structures ([Structure]): List of Pymatgen Structure Objects.
            ref_energies ([float]): List of DFT-calculated total energies of
                each structure in structures list.
            ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of
                each structure with m atoms in structures list. m can be varied
                with each single structure case.
            ref_stresses (list): List of DFT-calculated (6, ) viriral stresses
                of each structure in structures list.
        """
        predict_pool = pool_from(test_structures, ref_energies, ref_forces,
                                 ref_stresses)
        _, df_orig = convert_docs(predict_pool)

        data_pool = []
        for struct in test_structures:
            d = {'outputs': {}}
            d['structure'] = struct.as_dict()
            d['num_atoms'] = len(struct)
            features = self.describer.describe(struct)
            targets = self.predictor.predict(features.values)
            d['outputs']['energy'] = 0
            d['outputs']['forces'] = targets.reshape((-1, 3))
            d['outputs']['virial_stress'] = [0., 0., 0., 0., 0., 0.]
            data_pool.append(d)
        _, df_pred = convert_docs(data_pool)
        return df_orig, df_pred
Пример #4
0
    def train(self,
              train_structures,
              energies,
              forces,
              stresses=None,
              **kwargs):
        """
        Training data with model.

        Args:
            train_structures ([Structure]): The list of Pymatgen Structure object.
                energies ([float]): The list of total energies of each structure
                in structures list.
            energies ([float]): List of total energies of each structure in
                structures list.
            forces ([np.array]): List of (m, 3) forces array of each structure
                with m atoms in structures list. m can be varied with each
                single structure case.
            stresses (list): List of (6, ) virial stresses of each
                structure in structures list.
        """
        train_pool = pool_from(train_structures, energies, forces, stresses)
        _, df = convert_docs(train_pool)
        ytrain = df['y_orig'] / df['n']
        self.model.fit(inputs=train_structures, outputs=ytrain, **kwargs)
        self.specie = Element(train_structures[0].symbol_set[0])
Пример #5
0
    def describe(self, structure):
        """
        Returns data for one input structure.

        Args:
            structure (Structure): Input structure.
        """
        if not which('RuNNer'):
            raise RuntimeError("RuNNer has not been found.")
        if not which("RuNNerMakesym"):
            raise RuntimeError("RuNNerMakesym has not been found.")

        def read_functions_data(filename):
            """
            Read structure features from file.

            Args:
                filename (str): The functions file to be read.
            """
            with zopen(filename, 'rt') as f:
                lines = f.read()

            block_pattern = re.compile(
                r'(\n\s+\d+\n|^\s+\d+\n)(.+?)(?=\n\s+\d+\n|$)', re.S)
            points_features = []
            for (num_neighbor, block) in block_pattern.findall(lines):
                point_features = pd.DataFrame([
                    feature.split()[1:] for feature in block.split('\n')[:-1]
                ],
                                              dtype=np.float32)
                points_features.append(point_features)
            points_features = pd.concat(points_features,
                                        keys=range(
                                            len(block_pattern.findall(lines))),
                                        names=['point_index', None])
            return points_features

        dmin = sorted(set(structure.distance_matrix.ravel()))[1]
        r_etas = self.operator.generate_eta(dmin=self.dmin,
                                            r_cut=self.cutoff,
                                            num_symm2=self.num_symm2)
        atoms_filename = 'input.data'
        mode_output = 'mode.out'

        with ScratchDir('.'):
            atoms_filename = self.operator.write_cfgs(filename=atoms_filename,
                                                      cfg_pool=pool_from(
                                                          [structure]))
            input_filename = self.operator.write_input(mode=1,
                                                       r_cut=self.cutoff,
                                                       r_etas=r_etas,
                                                       a_etas=self.a_etas,
                                                       scale_feature=False)
            p = subprocess.Popen(['RuNNer'], stdout=open(mode_output, 'w'))
            stdout = p.communicate()[0]

            descriptors = read_functions_data('function.data')

        return pd.DataFrame(descriptors)
Пример #6
0
 def test_pool_from(self):
     test_pool = pool_from(self.test_structures, self.test_energies,
                           self.test_forces, self.test_stresses)
     for p1, p2 in zip(test_pool, self.test_pool):
         self.assertEqual(p1['outputs']['energy'], p2['outputs']['energy'])
         self.assertEqual(p1['outputs']['forces'], p2['outputs']['forces'])
         self.assertEqual(p1['outputs']['virial_stress'],
                          p2['outputs']['virial_stress'])
Пример #7
0
    def evaluate(self, test_structures, ref_energies, ref_forces,
                 ref_stresses):
        """
        Evaluate energies, forces and stresses of structures with trained
        interatomic potential.

        Args:
            test_structures ([Structure]): List of Pymatgen Structure Objects.
            ref_energies ([float]): List of DFT-calculated total energies of
                each structure in structures list.
            ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of
                each structure with m atoms in structures list. m can be varied
                with each single structure case.
            ref_stresses (list): List of DFT-calculated (6, ) viriral stresses
                of each structure in structures list.
        """
        if not which('nnp-predict'):
            raise RuntimeError("NNP Predictor has not been found.")

        original_file = 'input.data'
        predict_file = 'output.data'

        predict_pool = pool_from(test_structures, ref_energies, ref_forces,
                                 ref_stresses)
        with ScratchDir('.'):
            _, _ = self.write_param()
            original_file = self.write_cfgs(original_file,
                                            cfg_pool=predict_pool)
            _, df_orig = self.read_cfgs(original_file)

            input_filename = self.write_input()

            dfs = []
            for data in predict_pool:
                _ = self.write_cfgs(original_file, cfg_pool=[data])
                p = subprocess.Popen(['nnp-predict', input_filename],
                                     stdout=subprocess.PIPE)
                stdout = p.communicate()[0]

                rc = p.returncode
                if rc != 0:
                    error_msg = 'RuNNer exited with return code %d' % rc
                    msg = stdout.decode("utf-8").split('\n')[:-1]
                    try:
                        error_line = [
                            i for i, m in enumerate(msg)
                            if m.startswith('ERROR')
                        ][0]
                        error_msg += ', '.join([e for e in msg[error_line:]])
                    except Exception:
                        error_msg += msg[-1]
                    raise RuntimeError(error_msg)

                _, df = self.read_cfgs(predict_file)
                dfs.append(df)
            df_predict = pd.concat(dfs, ignore_index=True)

        return df_orig, df_predict
Пример #8
0
    def evaluate(self, test_structures, ref_energies=None,
                 ref_forces=None, ref_stresses=None, **kwargs):
        """
        Evaluate energies, forces and stresses of structures with trained
        interatomic potential.

        Args:
            test_structures ([Structure]): List of Pymatgen Structure Objects.
            ref_energies ([float]): List of DFT-calculated total energies of
                each structure in structures list.
            ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of
                each structure with m atoms in structures list. m can be varied
                with each single structure case.
            ref_stresses (list): List of DFT-calculated (6, ) viriral stresses
                of each structure in structures list.
            kwargs: Parameters of write_param method.
        """
        if not which('mlp'):
            raise RuntimeError("mlp has not been found.\n",
                               "Please refer to http://gitlab.skoltech.ru/shapeev/mlip ",
                               "for further detail.")
        fitted_mtp = 'fitted.mtp'
        original_file = 'original.cfgs'
        predict_file = 'predict.cfgs'
        predict_pool = pool_from(test_structures, ref_energies,
                                 ref_forces, ref_stresses)

        dataset = predict_pool[0]
        if isinstance(dataset['structure'], dict):
            structure = Structure.from_dict(dataset['structure'])
        else:
            structure = dataset['structure']
        symbol = structure.symbol_set[0]
        with ScratchDir('.'):
            self.write_param(fitted_mtp=fitted_mtp, Abinitio=0, Driver=1,
                             Calculate_EFS=True, Write_cfgs=predict_file,
                             Database_filename=original_file, **kwargs)
            original_file = self.write_cfg(original_file, cfg_pool=predict_pool)
            _, df_orig = self.read_cfgs(original_file, symbol=symbol)

            p = subprocess.Popen(['mlp', 'run', 'mlip.ini'], stdout=subprocess.PIPE)
            stdout = p.communicate()[0]
            rc = p.returncode
            if rc != 0:
                error_msg = 'MLP exited with return code %d' % rc
                msg = stdout.decode("utf-8").split('\n')[:-1]
                try:
                    error_line = [i for i, m in enumerate(msg)
                                  if m.startswith('ERROR')][0]
                    error_msg += ', '.join([e for e in msg[error_line:]])
                except Exception:
                    error_msg += msg[-1]
                raise RuntimeError(error_msg)
            _, df_predict = self.read_cfgs(predict_file, symbol=symbol)
        return df_orig, df_predict
Пример #9
0
    def evaluate2(self,
                  test_structures,
                  ref_energies=None,
                  ref_forces=None,
                  ref_stresses=None):
        """
        Evaluate energies, forces and stresses of structures with trained
        interatomic potential.
        Args:
            test_structures ([Structure]): List of Pymatgen Structure Objects.
            ref_energies ([float]): List of DFT-calculated total energies of
                each structure in structures list.
            ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of
                each structure with m atoms in structures list. m can be varied
                with each single structure case.
            ref_stresses (list): List of DFT-calculated (6, ) viriral stresses
                of each structure in structures list.
        """
        predict_pool = pool_from(test_structures, ref_energies, ref_forces,
                                 ref_stresses)
        _, df_orig = convert_docs(predict_pool)

        efs_calculator = EnergyForceStress(ff_settings=self)
        efs_results = efs_calculator.calculate(test_structures)

        assert len(test_structures) == len(efs_results)

        data_pool = []
        for struct, (energy, forces, stresses) in zip(test_structures,
                                                      efs_results):
            d = {'outputs': {}}
            d['structure'] = struct.as_dict()
            d['num_atoms'] = len(struct)
            d['outputs']['energy'] = energy
            d['outputs']['forces'] = forces
            d['outputs']['virial_stress'] = stresses

            data_pool.append(d)
        _, df_pred = convert_docs(data_pool)

        return df_orig, df_pred
Пример #10
0
 def train(self,
           train_structures,
           energies=None,
           forces=None,
           stresses=None,
           **kwargs):
     """
     Training data with agni method.
     Args:
         train_structures ([Structure]): The list of Pymatgen Structure object.
             energies ([float]): The list of total energies of each structure
             in structures list.
         energies ([float]): List of total energies of each structure in
             structures list.
         forces ([np.array]): List of (m, 3) forces array of each structure
             with m atoms in structures list. m can be varied with each
             single structure case.
         stresses (list): List of (6, ) virial stresses of each
             structure in structures list.
     """
     train_pool = pool_from(train_structures, energies, forces, stresses)
     _, _, features, targets = self.sample(train_pool, **kwargs)
     gamma = self.fit(features, targets)
     return 0
Пример #11
0
    def train(self,
              train_structures,
              energies=None,
              forces=None,
              stresses=None,
              default_sigma=[0.0005, 0.1, 0.05, 0.01],
              use_energies=True,
              use_forces=True,
              use_stress=False,
              **kwargs):
        """
        Training data with gaussian process regression.

        Args:
            train_structures ([Structure]): The list of Pymatgen Structure object.
                energies ([float]): The list of total energies of each structure
                in structures list.
            energies ([float]): List of total energies of each structure in
                structures list.
            forces ([np.array]): List of (m, 3) forces array of each structure
                with m atoms in structures list. m can be varied with each
                single structure case.
            stresses (list): List of (6, ) virial stresses of each
                structure in structures list.
            default_sigma (list): Error criteria in energies, forces, stress
                and hessian. Should have 4 numbers.
            use_energies (bool): Whether to use dft total energies for training.
                Default to True.
            use_forces (bool): Whether to use dft atomic forces for training.
                Default to True.
            use_stress (bool): Whether to use dft virial stress for training.
                Default to False.

            kwargs:
                l_max (int): Parameter to configure GAP. The band limit of
                    spherical harmonics basis function. Default to 12.
                n_max (int): Parameter to configure GAP. The number of radial basis
                    function. Default to 10.
                atom_sigma (float): Parameter to configure GAP. The width of gaussian
                    atomic density. Default to 0.5.
                zeta (float): Present when covariance function type is do product.
                    Default to 4.
                cutoff (float): Parameter to configure GAP. The cutoff radius.
                    Default to 4.0.
                cutoff_transition_width (float): Parameter to configure GAP.
                    The transition width of cutoff radial. Default to 0.5.
                delta (float): Parameter to configure Sparsification.
                    The signal variance of noise. Default to 1.
                f0 (float): Parameter to configure Sparsification.
                    The signal mean of noise. Default to 0.0.
                n_sparse (int): Parameter to configure Sparsification.
                    Number of sparse points.
                covariance_type (str): Parameter to configure Sparsification.
                    The type of convariance function. Default to dot_product.
                sparse_method (str): Method to perform clustering in sparsification.
                    Default to 'cur_points'.

                sparse_jitter (float): Intrisic error of atomic/bond energy,
                    used to regularise the sparse covariance matrix.
                    Default to 1e-8.
                e0 (float): Atomic energy value to be subtracted from energies
                    before fitting. Default to 0.0.
                e0_offset (float): Offset of baseline. If zero, the offset is
                    the average atomic energy of the input data or the e0
                    specified manually. Default to 0.0.
        """
        if not which('teach_sparse'):
            raise RuntimeError(
                "teach_sparse has not been found.\n",
                "Please refer to https://github.com/libAtoms/QUIP for ",
                "further detail.")
        atoms_filename = 'train.xyz'
        xml_filename = 'train.xml'
        train_pool = pool_from(train_structures, energies, forces, stresses)

        exe_command = ["teach_sparse"]
        exe_command.append('at_file={}'.format(atoms_filename))
        gap_configure_params = [
            'l_max', 'n_max', 'atom_sigma', 'zeta', 'cutoff',
            'cutoff_transition_width', 'delta', 'f0', 'n_sparse',
            'covariance_type', 'sparse_method'
        ]
        preprocess_params = ['sparse_jitter', 'e0', 'e0_offset']
        target_for_training = ['use_energies', 'use_forces', 'use_stress']
        if len(default_sigma) != 4:
            raise ValueError(
                "The default sigma is supposed to have 4 numbers.")

        gap_command = ['soap']
        for param_name in gap_configure_params:
            param = kwargs.get(param_name) if kwargs.get(param_name) \
                else soap_params.get(param_name)
            gap_command.append(param_name + '=' + '{}'.format(param))
        exe_command.append("gap=" + "{" + "{}".format(' '.join(gap_command)) +
                           "}")

        for param_name in preprocess_params:
            param = kwargs.get(param_name) if kwargs.get(param_name) \
                else soap_params.get(param_name)
            exe_command.append(param_name + '=' + '{}'.format(param))

        default_sigma = [str(f) for f in default_sigma]
        exe_command.append("default_sigma={%s}" % (' '.join(default_sigma)))

        if use_energies:
            exe_command.append('energy_parameter_name=dft_energy')
        if use_forces:
            exe_command.append('force_parameter_name=dft_force')
        if use_stress:
            exe_command.append('virial_parameter_name=dft_virial')
        exe_command.append('gp_file={}'.format(xml_filename))

        with ScratchDir('.'):
            self.write_cfgs(filename=atoms_filename, cfg_pool=train_pool)

            p = subprocess.Popen(exe_command, stdout=subprocess.PIPE)
            stdout = p.communicate()[0]
            rc = p.returncode
            if rc != 0:
                error_msg = 'QUIP exited with return code %d' % rc
                msg = stdout.decode("utf-8").split('\n')[:-1]
                try:
                    error_line = [
                        i for i, m in enumerate(msg) if m.startswith('ERROR')
                    ][0]
                    error_msg += ', '.join([e for e in msg[error_line:]])
                except Exception:
                    error_msg += msg[-1]
                raise RuntimeError(error_msg)

            def get_xml(xml_file):
                tree = ET.parse(xml_file)
                root = tree.getroot()
                potential_label = root.tag
                gpcoordinates = list(root.iter('gpCoordinates'))[0]
                param_file = gpcoordinates.get('sparseX_filename')
                param = np.loadtxt(param_file)
                return tree, param, potential_label

            tree, param, potential_label = get_xml(xml_filename)
            self.param['xml'] = tree
            self.param['param'] = param
            self.param['potential_label'] = potential_label

        return rc
Пример #12
0
    def train(self,
              train_structures,
              energies=None,
              forces=None,
              stresses=None,
              **kwargs):
        """
        Training data with moment tensor method.

        Args:
            train_structures ([Structure]): The list of Pymatgen Structure object.
                energies ([float]): The list of total energies of each structure
                in structures list.
            energies ([float]): List of total energies of each structure in
                structures list.
            forces ([np.array]): List of (m, 3) forces array of each structure
                with m atoms in structures list. m can be varied with each
                single structure case.
            stresses (list): List of (6, ) virial stresses of each
                structure in structures list.
            kwargs: Parameters in write_input method.
        """
        if not which('nnp-train'):
            raise RuntimeError("NNP Trainer has not been found.")

        train_pool = pool_from(train_structures, energies, forces, stresses)
        atoms_filename = 'input.data'

        with ScratchDir('.'):
            atoms_filename = self.write_cfgs(filename=atoms_filename,
                                             cfg_pool=train_pool)
            output = 'training_output'

            input_filename = self.write_input(**kwargs)
            p_scaling = subprocess.Popen(['nnp-scaling', input_filename])
            stdout = p_scaling.communicate()[0]

            p_train = subprocess.Popen(['nnp-train', input_filename],
                                       stdout=open(output, 'w'))
            stdout = p_train.communicate()[0]

            rc = p_train.returncode
            if rc != 0:
                error_msg = 'RuNNer exited with return code %d' % rc
                msg = stdout.decode("utf-8").split('\n')[:-1]
                try:
                    error_line = [
                        i for i, m in enumerate(msg) if m.startswith('ERROR')
                    ][0]
                    error_msg += ', '.join([e for e in msg[error_line:]])
                except Exception:
                    error_msg += msg[-1]
                raise RuntimeError(error_msg)

            with zopen(output) as f:
                error_lines = f.read()

            energy_rmse_pattern = re.compile(
                r'ENERGY\s*\S*\s*(\S*)\s*(\S*).*?\n')
            forces_rmse_pattern = re.compile(
                r'FORCES\s*\S*\s*(\S*)\s*(\S*).*?\n')
            self.train_energy_rmse, self.validation_energy_rmse = \
                np.array([line for line in energy_rmse_pattern.findall(error_lines)],
                         dtype=np.float).T
            self.train_forces_rmse, self.validation_forces_rmse = \
                np.array([line for line in forces_rmse_pattern.findall(error_lines)],
                         dtype=np.float).T

            weights_filename_pattern = 'weights*{}.out'.format(self.epochs)
            weights_filename = glob.glob(weights_filename_pattern)[0]

            self.suffix = weights_filename.split('.')[1]

            with open(weights_filename) as f:
                weights_lines = f.readlines()

            params = pd.DataFrame(
                [line.split() for line in weights_lines if "#" not in line])
            params.columns = [
                'value', 'type', 'index', 'start_layer', 'start_neuron',
                'end_layer', 'end_neuron'
            ]
            self.params = params

            for layer_index in range(1, len(self.layer_sizes)):
                weights_group = params[
                    (params['start_layer'] == str(layer_index - 1))
                    & (params['end_layer'] == str(layer_index))]

                weights = np.reshape(
                    np.array(weights_group['value'], dtype=np.float),
                    (self.layer_sizes[layer_index - 1],
                     self.layer_sizes[layer_index]))
                self.weights.append(weights)

                bs_group = params[(params['type'] == 'b') &
                                  (params['start_layer'] == str(layer_index))]
                bs = np.array(bs_group['value'], dtype=np.float)
                self.bs.append(bs)

            with open('scaling.data') as f:
                scaling_lines = f.readlines()
            scaling_params = pd.DataFrame(
                [line.split() for line in scaling_lines if '#' not in line])
            scaling_params.column = [
                'e_index', 'sf_index', 'sf_min', 'sf_max', 'sf_mean',
                'sf_sigma'
            ]
            self.scaling_params = scaling_params

        return rc
Пример #13
0
    def train(self, train_structures, energies=None, forces=None, stresses=None,
              unfitted_mtp=None, **kwargs):
        """
        Training data with moment tensor method.

        Args:
            train_structures ([Structure]): The list of Pymatgen Structure object.
                energies ([float]): The list of total energies of each structure
                in structures list.
            energies ([float]): List of total energies of each structure in
                structures list.
            forces ([np.array]): List of (m, 3) forces array of each structure
                with m atoms in structures list. m can be varied with each
                single structure case.
            stresses (list): List of (6, ) virial stresses of each
                structure in structures list.
            unfitted_mtp (str): Define the initial mtp file. Default to
                the mtp file stored in .params directory.
            kwargs: Parameters in write_ini method.
        """
        if not which('mlp'):
            raise RuntimeError("mlp has not been found.\n",
                               "Please refer to http://gitlab.skoltech.ru/shapeev/mlip ",
                               "for further detail.")
        train_pool = pool_from(train_structures, energies, forces, stresses)
        atoms_filename = 'train.cfgs'

        with ScratchDir('.'):
            atoms_filename = self.write_cfg(filename=atoms_filename, cfg_pool=train_pool)

            if not unfitted_mtp:
                unfitted_mtp = 'MTP.mtp'
                shutil.copyfile(MTP_file_path, os.path.join(os.getcwd(), unfitted_mtp))

            save_fitted_mtp = '.'.join(
                [unfitted_mtp.split('.')[0] + '_fitted', unfitted_mtp.split('.')[1]])
            self.write_ini(Abinitio=1, MLIP=unfitted_mtp, Driver=1, Fit=True,
                           Save=save_fitted_mtp, Database_filename=atoms_filename, **kwargs)

            p = subprocess.Popen(['mlp', 'run', 'mlip.ini'], stdout=subprocess.PIPE)
            stdout = p.communicate()[0]
            rc = p.returncode
            if rc != 0:
                error_msg = 'MLP exited with return code %d' % rc
                msg = stdout.decode("utf-8").split('\n')[:-1]
                try:
                    error_line = [i for i, m in enumerate(msg)
                                  if m.startswith('ERROR')][0]
                    error_msg += ', '.join([e for e in msg[error_line:]])
                except Exception:
                    error_msg += msg[-1]
                raise RuntimeError(error_msg)
            param = OrderedDict()
            with open(save_fitted_mtp, 'r') as f:
                lines = f.readlines()
            param['safe'] = [line.rstrip() for line in lines[:-2]]
            for line in lines[-2:]:
                key = line.rstrip().split(' = ')[0]
                value = json.loads(
                    line.rstrip().split(' = ')[1].replace('{', '[').replace('}', ']'))
                param[key] = value
            self.param = param
        return rc
Пример #14
0
    def describe(self, structure):
        """
        Returns data for one input structure.

        Args:
            structure (Structure): Input structure.
        """
        if not which('quip'):
            raise RuntimeError(
                "quip has not been found.\n",
                "Please refer to https://github.com/libAtoms/QUIP for ",
                "further detail.")
        atoms_filename = 'structure.xyz'

        exe_command = ['quip']
        exe_command.append('atoms_filename={}'.format(atoms_filename))

        descriptor_command = ['soap']
        descriptor_command.append("cutoff" + '=' + '{}'.format(self.cutoff))
        descriptor_command.append("l_max" + '=' + '{}'.format(self.l_max))
        descriptor_command.append("n_max" + '=' + '{}'.format(self.n_max))
        descriptor_command.append("atom_sigma" + '=' +
                                  '{}'.format(self.atom_sigma))
        atomic_numbers = [
            str(num) for num in np.unique(structure.atomic_numbers)
        ]
        n_Z = len(atomic_numbers)
        n_species = len(atomic_numbers)
        Z = '{' + '{}'.format(' '.join(atomic_numbers)) + '}'
        species_Z = '{' + '{}'.format(' '.join(atomic_numbers)) + '}'
        descriptor_command.append("n_Z" + '=' + str(n_Z))
        descriptor_command.append("Z" + '=' + Z)
        descriptor_command.append("n_species" + '=' + str(n_species))
        descriptor_command.append("species_Z" + '=' + species_Z)

        exe_command.append("descriptor_str=" + "{" +
                           "{}".format(' '.join(descriptor_command)) + "}")

        with ScratchDir('.'):
            atoms_filename = self.operator.write_cfgs(filename=atoms_filename,
                                                      cfg_pool=pool_from(
                                                          [structure]))
            descriptor_output = 'output'
            p = subprocess.Popen(exe_command,
                                 stdout=open(descriptor_output, 'w'))
            stdout = p.communicate()[0]
            rc = p.returncode
            if rc != 0:
                error_msg = 'QUIP exited with return code %d' % rc
                msg = stdout.decode("utf-8").split('\n')[:-1]
                try:
                    error_line = [
                        i for i, m in enumerate(msg) if m.startswith('ERROR')
                    ][0]
                    error_msg += ', '.join([e for e in msg[error_line:]])
                except Exception:
                    error_msg += msg[-1]
                raise RuntimeError(error_msg)

            with zopen(descriptor_output, 'rt') as f:
                lines = f.read()

            descriptor_pattern = re.compile('DESC(.*?)\n', re.S)
            descriptors = pd.DataFrame([
                np.array(c.split(), dtype=np.float)
                for c in descriptor_pattern.findall(lines)
            ])

        return descriptors