Пример #1
0
def model(base, winequality_vd):
    base.cursor.execute("DROP MODEL IF EXISTS linreg_model_test")
    model_class = LinearRegression("linreg_model_test", cursor=base.cursor)
    model_class.fit("public.winequality",
                    ["citric_acid", "residual_sugar", "alcohol"], "quality")
    yield model_class
    model_class.drop()
Пример #2
0
def model(winequality_vd):
    model_class = LinearRegression("linreg_model_test", )
    model_class.drop()
    model_class.fit("public.winequality",
                    ["citric_acid", "residual_sugar", "alcohol"], "quality")
    yield model_class
    model_class.drop()
Пример #3
0
 def test_contour(self, winequality_vd):
     model_test = LinearRegression("model_contour", )
     model_test.drop()
     model_test.fit(
         winequality_vd,
         ["citric_acid", "residual_sugar"],
         "quality",
     )
     result = model_test.contour()
     assert len(result.get_default_bbox_extra_artists()) == 32
     model_test.drop()
Пример #4
0
    def test_model_from_vDF(self, base, winequality_vd):
        base.cursor.execute("DROP MODEL IF EXISTS linreg_from_vDF")
        model_test = LinearRegression("linreg_from_vDF", cursor=base.cursor)
        model_test.fit(winequality_vd, ["alcohol"], "quality")

        base.cursor.execute(
            "SELECT model_name FROM models WHERE model_name = 'linreg_from_vDF'"
        )
        assert base.cursor.fetchone()[0] == "linreg_from_vDF"

        model_test.drop()
Пример #5
0
    def test_set_cursor(self, base):
        model_test = LinearRegression("linear_reg_cursor_test", cursor=base.cursor)
        # TODO: creat a new cursor
        model_test.set_cursor(base.cursor)
        model_test.drop()
        model_test.fit("public.winequality", ["alcohol"], "quality")

        base.cursor.execute(
            "SELECT model_name FROM models WHERE model_name = 'linear_reg_cursor_test'"
        )
        assert base.cursor.fetchone()[0] == "linear_reg_cursor_test"

        model_test.drop()
Пример #6
0
 def test_get_plot(self, winequality_vd):
     current_cursor().execute("DROP MODEL IF EXISTS model_test_plot")
     model_test = LinearRegression("model_test_plot", )
     model_test.fit(winequality_vd, ["alcohol"], "quality")
     result = model_test.plot(color="r")
     assert len(result.get_default_bbox_extra_artists()) == 9
     plt.close("all")
     model_test.drop()
     model_test.fit(winequality_vd, ["alcohol", "residual_sugar"],
                    "quality")
     result = model_test.plot(color="r")
     assert len(result.get_default_bbox_extra_artists()) == 3
     plt.close("all")
     model_test.drop()
Пример #7
0
    def test_drop(self):
        current_cursor().execute("DROP MODEL IF EXISTS linreg_model_test_drop")
        model_test = LinearRegression("linreg_model_test_drop", )
        model_test.fit("public.winequality", ["alcohol"], "quality")

        current_cursor().execute(
            "SELECT model_name FROM models WHERE model_name = 'linreg_model_test_drop'"
        )
        assert current_cursor().fetchone()[0] == "linreg_model_test_drop"

        model_test.drop()
        current_cursor().execute(
            "SELECT model_name FROM models WHERE model_name = 'linreg_model_test_drop'"
        )
        assert current_cursor().fetchone() is None
Пример #8
0
    def test_drop(self, base):
        base.cursor.execute("DROP MODEL IF EXISTS linreg_model_test_drop")
        model_test = LinearRegression("linreg_model_test_drop", cursor=base.cursor)
        model_test.fit("public.winequality", ["alcohol"], "quality")

        base.cursor.execute(
            "SELECT model_name FROM models WHERE model_name = 'linreg_model_test_drop'"
        )
        assert base.cursor.fetchone()[0] == "linreg_model_test_drop"

        model_test.drop()
        base.cursor.execute(
            "SELECT model_name FROM models WHERE model_name = 'linreg_model_test_drop'"
        )
        assert base.cursor.fetchone() is None
Пример #9
0
 def test_cochrane_orcutt(self, airline_vd):
     airline_copy = airline_vd.copy()
     airline_copy["passengers_bias"] = (airline_copy["passengers"]**2 -
                                        50 * st.random())
     drop("lin_cochrane_orcutt_model_test", method="model")
     model = LinearRegression("lin_cochrane_orcutt_model_test")
     model.fit(airline_copy, ["passengers_bias"], "passengers")
     result = st.cochrane_orcutt(
         model,
         airline_copy,
         ts="date",
         prais_winsten=True,
     )
     assert result.coef_["coefficient"][0] == pytest.approx(
         25.8582027191416, 1e-2)
     assert result.coef_["coefficient"][1] == pytest.approx(
         0.00123563974547625, 1e-2)
     model.drop()
Пример #10
0
    def test_cochrane_orcutt(self, airline_vd, base):
        airline_copy = airline_vd.copy()
        airline_copy["passengers_bias"] = airline_copy[
            "passengers"]**2 - 50 * st.random()

        from verticapy.learn.linear_model import LinearRegression
        base.cursor.execute(
            "DROP MODEL IF EXISTS lin_cochrane_orcutt_model_test")
        model = LinearRegression("lin_cochrane_orcutt_model_test",
                                 cursor=base.cursor)
        model.fit(airline_copy, ["passengers_bias"], "passengers")
        result = st.cochrane_orcutt(
            model,
            airline_copy,
            ts="date",
            prais_winsten=True,
        )
        assert result.coef_["coefficient"][0] == pytest.approx(
            25.8582027191416, 1e-2)
        assert result.coef_["coefficient"][1] == pytest.approx(
            0.00123563974547625, 1e-2)
        model.drop()
Пример #11
0
def het_white(
    vdf: vDataFrame, eps: str, X: list,
):
    """
---------------------------------------------------------------------------
White’s Lagrange Multiplier Test for heteroscedasticity.

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
eps: str
    Input residual vcolumn.
X: str
    Exogenous Variables to test the heteroscedasticity on.

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """
    check_types(
        [("eps", eps, [str],), ("X", X, [list],), ("vdf", vdf, [vDataFrame, str,],),],
    )
    columns_check([eps] + X, vdf)
    eps = vdf_columns_names([eps], vdf)[0]
    X = vdf_columns_names(X, vdf)
    X_0 = ["1"] + X
    variables = []
    variables_names = []
    for i in range(len(X_0)):
        for j in range(i, len(X_0)):
            if i != 0 or j != 0:
                variables += ["{} * {} AS var_{}_{}".format(X_0[i], X_0[j], i, j)]
                variables_names += ["var_{}_{}".format(i, j)]
    query = "(SELECT {}, POWER({}, 2) AS VERTICAPY_TEMP_eps2 FROM {}) VERTICAPY_SUBTABLE".format(
        ", ".join(variables), eps, vdf.__genSQL__()
    )
    vdf_white = vdf_from_relation(query, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])

    from verticapy.learn.linear_model import LinearRegression

    schema_writing = vdf._VERTICAPY_VARIABLES_["schema_writing"]
    if not (schema_writing):
        schema_writing = "public"
    name = schema_writing + ".VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
        get_session(vdf._VERTICAPY_VARIABLES_["cursor"])
    )
    model = LinearRegression(name, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    try:
        model.fit(vdf_white, variables_names, "VERTICAPY_TEMP_eps2")
        R2 = model.score("r2")
        model.drop()
    except:
        try:
            model.set_params({"solver": "bfgs"})
            model.fit(vdf_white, variables_names, "VERTICAPY_TEMP_eps2")
            R2 = model.score("r2")
            model.drop()
        except:
            model.drop()
            raise
    n = vdf.shape()[0]
    if len(X) > 1:
        k = 2 * len(X) + math.factorial(len(X)) / 2 / (math.factorial(len(X) - 2))
    else:
        k = 1
    LM = n * R2
    lm_pvalue = chi2.sf(LM, k)
    F = (n - k - 1) * R2 / (1 - R2) / k
    f_pvalue = f.sf(F, k, n - k - 1)
    result = tablesample(
        {
            "index": [
                "Lagrange Multiplier Statistic",
                "lm_p_value",
                "F Value",
                "f_p_value",
            ],
            "value": [LM, lm_pvalue, F, f_pvalue],
        }
    )
    return result
Пример #12
0
def het_goldfeldquandt(
    vdf: vDataFrame, y: str, X: list, idx: int = 0, split: float = 0.5
):
    """
---------------------------------------------------------------------------
Goldfeld-Quandt homoscedasticity test.

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
y: str
    Response Column.
X: list
    Exogenous Variables.
idx: int, optional
    Column index of variable according to which observations are sorted 
    for the split.
split: float, optional
    Float to indicate where to split (Example: 0.5 to split on the median).

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """

    def model_fit(input_relation, X, y, model):
        var = []
        for vdf_tmp in input_relation:
            model.drop()
            model.fit(vdf_tmp, X, y)
            model.predict(vdf_tmp, name="verticapy_prediction")
            vdf_tmp["residual_0"] = vdf_tmp[y] - vdf_tmp["verticapy_prediction"]
            var += [vdf_tmp["residual_0"].var()]
            model.drop()
        return var

    check_types(
        [
            ("y", y, [str],),
            ("X", X, [list],),
            ("idx", idx, [int, float],),
            ("split", split, [int, float],),
            ("vdf", vdf, [vDataFrame, str,],),
        ],
    )
    columns_check([y] + X, vdf)
    y = vdf_columns_names([y], vdf)[0]
    X = vdf_columns_names(X, vdf)
    split_value = vdf[X[idx]].quantile(split)
    vdf_0_half = vdf.search(vdf[X[idx]] < split_value)
    vdf_1_half = vdf.search(vdf[X[idx]] > split_value)
    from verticapy.learn.linear_model import LinearRegression

    schema_writing = vdf._VERTICAPY_VARIABLES_["schema_writing"]
    if not (schema_writing):
        schema_writing = "public"
    name = schema_writing + ".VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
        get_session(vdf._VERTICAPY_VARIABLES_["cursor"])
    )
    model = LinearRegression(name, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    try:
        var0, var1 = model_fit([vdf_0_half, vdf_1_half], X, y, model)
    except:
        try:
            model.set_params({"solver": "bfgs"})
            var0, var1 = model_fit([vdf_0_half, vdf_1_half], X, y, model)
        except:
            model.drop()
            raise
    n, m = vdf_0_half.shape()[0], vdf_1_half.shape()[0]
    F = var0 / var1
    f_pvalue = f.sf(F, n, m)
    result = tablesample({"index": ["F Value", "f_p_value",], "value": [F, f_pvalue],})
    return result
Пример #13
0
def het_breuschpagan(
    vdf: vDataFrame, eps: str, X: list,
):
    """
---------------------------------------------------------------------------
Breusch-Pagan test for heteroscedasticity.

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
eps: str
    Input residual vcolumn.
X: list
    Exogenous Variables to test the heteroscedasticity on.

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """
    check_types(
        [("eps", eps, [str],), ("X", X, [list],), ("vdf", vdf, [vDataFrame, str,],),],
    )
    columns_check([eps] + X, vdf)
    eps = vdf_columns_names([eps], vdf)[0]
    X = vdf_columns_names(X, vdf)

    from verticapy.learn.linear_model import LinearRegression

    schema_writing = vdf._VERTICAPY_VARIABLES_["schema_writing"]
    if not (schema_writing):
        schema_writing = "public"
    name = schema_writing + ".VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
        get_session(vdf._VERTICAPY_VARIABLES_["cursor"])
    )
    model = LinearRegression(name, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    vdf_copy = vdf.copy()
    vdf_copy["VERTICAPY_TEMP_eps2"] = vdf_copy[eps] ** 2
    try:
        model.fit(vdf_copy, X, "VERTICAPY_TEMP_eps2")
        R2 = model.score("r2")
        model.drop()
    except:
        try:
            model.set_params({"solver": "bfgs"})
            model.fit(vdf_copy, X, "VERTICAPY_TEMP_eps2")
            R2 = model.score("r2")
            model.drop()
        except:
            model.drop()
            raise
    n = vdf.shape()[0]
    k = len(X)
    LM = n * R2
    lm_pvalue = chi2.sf(LM, k)
    F = (n - k - 1) * R2 / (1 - R2) / k
    f_pvalue = f.sf(F, k, n - k - 1)
    result = tablesample(
        {
            "index": [
                "Lagrange Multiplier Statistic",
                "lm_p_value",
                "F Value",
                "f_p_value",
            ],
            "value": [LM, lm_pvalue, F, f_pvalue],
        }
    )
    return result
Пример #14
0
def het_arch(
    vdf: vDataFrame, eps: str, ts: str, by: list = [], p: int = 1,
):
    """
---------------------------------------------------------------------------
Engle’s Test for Autoregressive Conditional Heteroscedasticity (ARCH).

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
eps: str
    Input residual vcolumn.
ts: str
    vcolumn used as timeline. It will be to use to order the data. It can be
    a numerical or type date like (date, datetime, timestamp...) vcolumn.
by: list, optional
    vcolumns used in the partition.
p: int, optional
    Number of lags to consider in the test.

Returns
-------
tablesample
    An object containing the result. For more information, see
    utilities.tablesample.
    """
    check_types(
        [
            ("eps", eps, [str],),
            ("ts", ts, [str],),
            ("p", p, [int, float],),
            ("vdf", vdf, [vDataFrame, str,],),
        ],
    )
    columns_check([eps, ts] + by, vdf)
    eps = vdf_columns_names([eps], vdf)[0]
    ts = vdf_columns_names([ts], vdf)[0]
    by = vdf_columns_names(by, vdf)
    X = []
    X_names = []
    for i in range(0, p + 1):
        X += [
            "LAG(POWER({}, 2), {}) OVER({}ORDER BY {}) AS lag_{}".format(
                eps, i, ("PARTITION BY " + ", ".join(by)) if (by) else "", ts, i
            )
        ]
        X_names += ["lag_{}".format(i)]
    query = "(SELECT {} FROM {}) VERTICAPY_SUBTABLE".format(
        ", ".join(X), vdf.__genSQL__()
    )
    vdf_lags = vdf_from_relation(query, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    from verticapy.learn.linear_model import LinearRegression

    schema_writing = vdf._VERTICAPY_VARIABLES_["schema_writing"]
    if not (schema_writing):
        schema_writing = "public"
    name = schema_writing + ".VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
        get_session(vdf._VERTICAPY_VARIABLES_["cursor"])
    )
    model = LinearRegression(name, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
    try:
        model.fit(vdf_lags, X_names[1:], X_names[0])
        R2 = model.score("r2")
        model.drop()
    except:
        try:
            model.set_params({"solver": "bfgs"})
            model.fit(vdf_lags, X_names[1:], X_names[0])
            R2 = model.score("r2")
            model.drop()
        except:
            model.drop()
            raise
    n = vdf.shape()[0]
    k = len(X)
    LM = (n - p) * R2
    lm_pvalue = chi2.sf(LM, p)
    F = (n - 2 * p - 1) * R2 / (1 - R2) / p
    f_pvalue = f.sf(F, p, n - 2 * p - 1)
    result = tablesample(
        {
            "index": [
                "Lagrange Multiplier Statistic",
                "lm_p_value",
                "F Value",
                "f_p_value",
            ],
            "value": [LM, lm_pvalue, F, f_pvalue],
        }
    )
    return result
Пример #15
0
def variance_inflation_factor(
    vdf: vDataFrame, X: list, X_idx: int = None,
):
    """
---------------------------------------------------------------------------
Computes the variance inflation factor (VIF). It can be used to detect
multicollinearity in an OLS Regression Analysis.

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
X: list
    Input Variables.
X_idx: int
    Index of the exogenous variable in X. If left to None, a tablesample will
    be returned with all the variables VIF.

Returns
-------
float
    VIF.
    """
    check_types(
        [
            ("X_idx", X_idx, [int],),
            ("X", X, [list],),
            ("vdf", vdf, [vDataFrame, str,],),
        ],
    )
    columns_check(X, vdf)
    X = vdf_columns_names(X, vdf)

    if isinstance(X_idx, str):
        columns_check([X_idx], vdf)
        for i in range(len(X)):
            if str_column(X[i]) == str_column(X_idx):
                X_idx = i
                break
    if isinstance(X_idx, (int, float)):
        X_r = []
        for i in range(len(X)):
            if i != X_idx:
                X_r += [X[i]]
        y_r = X[X_idx]

        from verticapy.learn.linear_model import LinearRegression

        schema_writing = vdf._VERTICAPY_VARIABLES_["schema_writing"]
        if not (schema_writing):
            schema_writing = "public"
        name = schema_writing + ".VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(
            get_session(vdf._VERTICAPY_VARIABLES_["cursor"])
        )
        model = LinearRegression(name, cursor=vdf._VERTICAPY_VARIABLES_["cursor"])
        try:
            model.fit(vdf, X_r, y_r)
            R2 = model.score("r2")
            model.drop()
        except:
            try:
                model.set_params({"solver": "bfgs"})
                model.fit(vdf, X_r, y_r)
                R2 = model.score("r2")
                model.drop()
            except:
                model.drop()
                raise
        if 1 - R2 != 0:
            return 1 / (1 - R2)
        else:
            return np.inf
    elif X_idx == None:
        VIF = []
        for i in range(len(X)):
            VIF += [variance_inflation_factor(vdf, X, i)]
        return tablesample({"X_idx": X, "VIF": VIF})
    else:
        raise ParameterError(
            f"Wrong type for Parameter X_idx.\nExpected integer, found {type(X_idx)}."
        )
Пример #16
0
def seasonal_decompose(
    vdf: vDataFrame,
    column: str,
    ts: str,
    by: list = [],
    period: int = -1,
    polynomial_order: int = 1,
    estimate_seasonality: bool = True,
    rule: Union[str, datetime.timedelta] = None,
    mult: bool = False,
    two_sided: bool = False,
):
    """
---------------------------------------------------------------------------
Performs a seasonal time series decomposition.

Parameters
----------
vdf: vDataFrame
    Input vDataFrame.
column: str
    Input vcolumn to decompose.
ts: str
    TS (Time Series) vcolumn to use to order the data. It can be of type date
    or a numerical vcolumn.
by: list, optional
    vcolumns used in the partition.
period: int, optional
	Time Series period. It is used to retrieve the seasonality component.
    if period <= 0, the seasonal component will be estimated using ACF. In 
    this case, polynomial_order must be greater than 0.
polynomial_order: int, optional
    If greater than 0, the trend will be estimated using a polynomial of degree
    'polynomial_order'. The parameter 'two_sided' will be ignored.
    If equal to 0, the trend will be estimated using Moving Averages.
estimate_seasonality: bool, optional
    If set to True, the seasonality will be estimated using cosine and sine
    functions.
rule: str / time, optional
    Interval to use to slice the time. For example, '5 minutes' will create records
    separated by '5 minutes' time interval.
mult: bool, optional
	If set to True, the decomposition type will be 'multiplicative'. Otherwise,
	it is 'additive'.
two_sided: bool, optional
    If set to True, a centered moving average is used for the trend isolation.
    Otherwise only past values are used.

Returns
-------
vDataFrame
    object containing (ts, column, TS seasonal part, TS trend, TS noise).
    """
    if isinstance(by, str):
        by = [by]
    check_types(
        [
            ("ts", ts, [str],),
            ("column", column, [str],),
            ("by", by, [list],),
            ("rule", rule, [str, datetime.timedelta,],),
            ("vdf", vdf, [vDataFrame,],),
            ("period", period, [int,],),
            ("mult", mult, [bool,],),
            ("two_sided", two_sided, [bool,],),
            ("polynomial_order", polynomial_order, [int,],),
            ("estimate_seasonality", estimate_seasonality, [bool,],),
        ],
    )
    assert period > 0 or polynomial_order > 0, ParameterError("Parameters 'polynomial_order' and 'period' can not be both null.")
    columns_check([column, ts] + by, vdf)
    ts, column, by = (
        vdf_columns_names([ts], vdf)[0],
        vdf_columns_names([column], vdf)[0],
        vdf_columns_names(by, vdf),
    )
    if rule:
        vdf_tmp = vdf.asfreq(ts=ts, rule=period, method={column: "linear"}, by=by)
    else:
        vdf_tmp = vdf[[ts, column]]
    trend_name, seasonal_name, epsilon_name = (
        "{}_trend".format(column[1:-1]),
        "{}_seasonal".format(column[1:-1]),
        "{}_epsilon".format(column[1:-1]),
    )
    by, by_tmp = "" if not (by) else "PARTITION BY " + ", ".join(vdf_columns_names(by, self)) + " ", by
    if polynomial_order <= 0:
        if two_sided:
            if period == 1:
                window = (-1, 1)
            else:
                if period % 2 == 0:
                    window = (-period / 2 + 1, period / 2)
                else:
                    window = (int(-period / 2), int(period / 2))
        else:
            if period == 1:
                window = (-2, 0)
            else:
                window = (-period + 1, 0)
        vdf_tmp.rolling("avg", window, column, by_tmp, ts, trend_name)
    else:
        vdf_poly = vdf_tmp.copy()
        X = []
        for i in range(1, polynomial_order + 1):
            vdf_poly[f"t_{i}"] = f"POWER(ROW_NUMBER() OVER ({by}ORDER BY {ts}), {i})"
            X += [f"t_{i}"]
        schema = vdf_poly._VERTICAPY_VARIABLES_["schema_writing"]
        if not (schema):
            schema = vdf_poly._VERTICAPY_VARIABLES_["schema"]
        if not (schema):
            schema = "public"

        from verticapy.learn.linear_model import LinearRegression
        model = LinearRegression(name="{}.VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(schema, get_session(vdf_poly._VERTICAPY_VARIABLES_["cursor"])),
                                 cursor=vdf_poly._VERTICAPY_VARIABLES_["cursor"],
                                 solver="bfgs",
                                 max_iter=100,
                                 tol=1e-6,)
        model.drop()
        model.fit(vdf_poly, X, column)
        coefficients = model.coef_["coefficient"]
        coefficients = [str(coefficients[0])] + [f"{coefficients[i]} * POWER(ROW_NUMBER() OVER({by}ORDER BY {ts}), {i})" if i != 1 else f"{coefficients[1]} * ROW_NUMBER() OVER({by}ORDER BY {ts})" for i in range(1, polynomial_order + 1)]
        vdf_tmp[trend_name] = " + ".join(coefficients)
        model.drop()
    if mult:
        vdf_tmp[seasonal_name] = f'{column} / NULLIFZERO("{trend_name}")'
    else:
        vdf_tmp[seasonal_name] = vdf_tmp[column] - vdf_tmp[trend_name]
    if period <= 0:
        acf = vdf_tmp.acf(column=seasonal_name, ts=ts, p=23, acf_type="heatmap", show=False)
        period = int(acf["index"][1].split("_")[1])
        if period == 1:
            period = int(acf["index"][2].split("_")[1])
    vdf_tmp["row_number_id"] = f"MOD(ROW_NUMBER() OVER ({by} ORDER BY {ts}), {period})"
    if mult:
        vdf_tmp[
            seasonal_name
        ] = f"AVG({seasonal_name}) OVER (PARTITION BY row_number_id) / NULLIFZERO(AVG({seasonal_name}) OVER ())"
    else:
        vdf_tmp[
            seasonal_name
        ] = f"AVG({seasonal_name}) OVER (PARTITION BY row_number_id) - AVG({seasonal_name}) OVER ()"
    if estimate_seasonality:
        vdf_seasonality = vdf_tmp.copy()
        vdf_seasonality["t_cos"] = f"COS(2 * PI() * ROW_NUMBER() OVER ({by}ORDER BY {ts}) / {period})"
        vdf_seasonality["t_sin"] = f"SIN(2 * PI() * ROW_NUMBER() OVER ({by}ORDER BY {ts}) / {period})"
        X = ["t_cos", "t_sin",]
        schema = vdf_seasonality._VERTICAPY_VARIABLES_["schema_writing"]
        if not (schema):
            schema = vdf_seasonality._VERTICAPY_VARIABLES_["schema"]
        if not (schema):
            schema = "public"

        from verticapy.learn.linear_model import LinearRegression
        model = LinearRegression(name="{}.VERTICAPY_TEMP_MODEL_LINEAR_REGRESSION_{}".format(schema, get_session(vdf_seasonality._VERTICAPY_VARIABLES_["cursor"])),
                                 cursor=vdf_seasonality._VERTICAPY_VARIABLES_["cursor"],
                                 solver="bfgs",
                                 max_iter=100,
                                 tol=1e-6,)
        model.drop()
        model.fit(vdf_seasonality, X, seasonal_name)
        coefficients = model.coef_["coefficient"]
        vdf_tmp[seasonal_name] = f"{coefficients[0]} + {coefficients[1]} * COS(2 * PI() * ROW_NUMBER() OVER ({by}ORDER BY {ts}) / {period}) + {coefficients[2]} * SIN(2 * PI() * ROW_NUMBER() OVER ({by}ORDER BY {ts}) / {period})"
        model.drop()
    if mult:
        vdf_tmp[
            epsilon_name
        ] = f'{column} / NULLIFZERO("{trend_name}") / NULLIFZERO("{seasonal_name}")'
    else:
        vdf_tmp[epsilon_name] = (
            vdf_tmp[column] - vdf_tmp[trend_name] - vdf_tmp[seasonal_name]
        )
    vdf_tmp["row_number_id"].drop()
    return vdf_tmp
Пример #17
0
 def test_repr(self, model):
     assert "|coefficient|std_err |t_value |p_value" in model.__repr__()
     model_repr = LinearRegression("lin_repr")
     model_repr.drop()
     assert model_repr.__repr__() == "<LinearRegression>"