# pylint: disable=invalid-name,too-many-lines from typing import Dict, List from sklearn.ensemble import RandomForestClassifier # type: ignore from views.apps.model import api from views.specs.models import cm from views.specs.periods import get_periods rf = RandomForestClassifier(n_jobs=-1, n_estimators=10_000) # The currently latest model development run id run_id = "d_2020_04_01" periods: List[api.Period] = get_periods(run_id=run_id) steps = [1, 3, 6, 9, 12, 18, 24, 30, 36, 38] fullsample = api.Downsampling(share_positive=1.0, share_negative=1.0) cm_sb_vdem_global = api.Model( name="cm_sb_vdem_global", col_outcome=cm["sb_vdem_global"]["col_outcome"], cols_features=cm["sb_vdem_global"]["cols_features"], steps=steps, outcome_type="prob", estimator=rf, periods=periods, downsampling=fullsample, tags=["train_global"], )
xgb crosslevel ] """ # pylint: disable=invalid-name from typing import Dict, List from views.apps.model.api import Ensemble, Model, Period from views.specs.periods import get_periods from . import models_pgm # The currently latest model development run id run_id = "d_2020_04_01" periods: List[Period] = get_periods(run_id=run_id) models_pgm_sb_prelim: List[Model] = [ models_pgm.pgm_sb_hist_legacy, models_pgm.pgm_sb_allthemes, models_pgm.pgm_sb_onset24_100_all, models_pgm.pgm_sb_onset24_1_all, models_pgm.pgm_sb_pgd_natural, models_pgm.pgm_sb_pgd_social, models_pgm.pgm_sb_sptime, ] models_pgm_ns_prelim: List[Model] = [ models_pgm.pgm_ns_hist_legacy, models_pgm.pgm_ns_allthemes, models_pgm.pgm_ns_onset24_100_all,
from views.utils import db, io, data as datautils from views.utils.data import assign_into_df from views.apps.pipeline.models_cm import all_cm_models_by_name from views.apps.pipeline.models_pgm import all_pgm_models_by_name from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor for name, dataset in DATASETS.items(): print(name) dataset = views.DATASETS["cm_africa_imp_0"] df = dataset.df run_id = "d_2020_09_01_prelim" periods = get_periods(run_id) # as a list periods_by_name = get_periods_by_name(run_id) # as a dict period_a = periods_by_name["A"] period_b = periods_by_name["B"] period_c = periods_by_name["C"] model_from_pipeline_spec = all_cm_models_by_name["cm_sb_acled_violence"] model_from_pipeline_spec1 = all_cm_models_by_name["cm_sb_cflong"] model_from_pipeline_spec2 = all_cm_models_by_name["cm_sb_neibhist"] model_from_pipeline_spec3 = all_cm_models_by_name["cm_sb_cdummies"] model_from_pipeline_spec4 = all_cm_models_by_name["cm_sb_acled_protest"] model_from_pipeline_spec5 = all_cm_models_by_name["cm_sb_reign_coups"] model_from_pipeline_spec6 = all_cm_models_by_name["cm_sb_icgcw"] model_from_pipeline_spec7 = all_cm_models_by_name["cm_sb_reign_drought"] model_from_pipeline_spec8 = all_cm_models_by_name["cm_sb_reign_global"]