def main(): args = process_command_line() with open(args.bounding_box_file, 'r') as f: bb_str = f.readline() bounding_box = bb_str.split(' ') bounding_box = [int(x) for x in bounding_box] assert len(bounding_box) == 6, "Bounding box needs 6 coordinates!" print "Bounding box:", bounding_box shape = (bounding_box[1] - bounding_box[0], bounding_box[3] - bounding_box[2], bounding_box[5] - bounding_box[4] ) print "Resulting shape:", shape print "Reading in skeletons from", args.skeleton_path # get the skeleton coordinates first skeleton_coordinates = coordinates_from_json(args.skeleton_path, bounding_box) # perform dense reconstruction for all skeleton coordinates we have print "Projecting skeletons to dense segments" dense_skeletons = dense_reconstruction(args.prob_folder, skeleton_coordinates, args.rf_path, shape) # for debugging from volumina_viewer import volumina_n_layer probs = np.array(np.squeeze(vigra.readVolume(args.prob_folder+"/pmaps_z=000.tif"))) volumina_n_layer([probs, dense_skeletons.astype(np.uint32)])
def vol_to_vol(path): vol = vigra.readVolume(path + ".tif") vol = vol.squeeze() vol = vol.view(np.ndarray) #print vol.shape #print type(vol) return vol
def load_feats_and_gt_pedunculus(): #raw_data = vigra.readHDF5( # "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401pedunculus_middle_512x512_first30_sliced.h5", # "data" # ) gt = vigra.readVolume( "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401_pedunculus_membrane_labeling.tif") gt = np.squeeze(gt) # delete black slice gt = np.delete(gt, 6, axis = 2) gt[gt == 0.] = 1 gt[gt == 255.] = 0 gt = gt.astype(np.uint32) save_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/features" #compute_ilastik_2dfeatures(raw_data, save_path) feats_path = os.path.join( save_path, "all_features.h5") # make sure that features are computed! #feats = load_precomputed_feats(save_path, raw_data.shape) #vigra.writeHDF5(feats, feats_path, "data") feats = vigra.readHDF5(feats_path, "data") return (feats, gt)
def gt_pedunculus(): labels_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401_pedunculus_membrane_labeling.tif" raw_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401pedunculus_middle_512x512_first30_sliced.h5" labels = vigra.readVolume(labels_path) labels = np.squeeze(labels) labels = np.delete(labels, 6, axis = 2) raw = vigra.readHDF5(raw_path, "data") labels = preprocess_for_bgsmoothing_pedunculus(labels) gt = smooth_background(labels).astype(np.uint32) volumina_n_layer( (raw, labels, gt) ) gt_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/ground_truth_seg.h5" vigra.writeHDF5(gt, gt_path, "gt")
def project_gt_pedunculus(): labels_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401_pedunculus_membrane_labeling.tif" gt_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/gt_mc.h5" raw_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/150401pedunculus_middle_512x512_first30_sliced.h5" labels = vigra.readVolume(labels_path) labels = np.squeeze(labels) labels = np.delete(labels, 6, axis = 2) gt = vigra.readHDF5(gt_path, "gt") raw = vigra.readHDF5(raw_path, "data") gt = project_gt(labels, gt) save_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/gt_mc_bkg.h5" volumina_n_layer( (raw, gt, labels) ) vigra.writeHDF5(gt, save_path, "gt")
def slices_to_vol(path): files = os.listdir(path) vol = vigra.readVolume(os.path.join(path, files[0])) vol = vol.squeeze() vol = vol.view(np.ndarray) return vol
def vol_to_vol(path): vol = vigra.readVolume( path + ".tif" ) vol = vol.squeeze() vol = vol.view(np.ndarray) return vol
# i += 1 # # ##seg = seg.astype( np.float32 ) ##seg /= seg.max() ##seg *= 255.0 # #print np.unique(seg).size #print seg.max() # #save_path = "/home/constantin/Work/data_ssd/data_080515/pedunculus/res_mc/post_processed/final_mitooff.tif" # #vigra.impex.writeVolume( seg, save_path, '' ) path = "/home/constantin/Desktop/results_for_fred/export_Z=00.png" # #for i in range(29): # path_im = path + str(i).zfill(2) + ".png" # im = vigra.impex.readImage(path_im) # vol_save[:,:,:,i] = im.astype(np.uint8) vol_save = vigra.readVolume(path) print vol_save.shape save_path = "/home/constantin/Desktop/results_for_fred/result_mitooff.tif" vigra.impex.writeVolume( vol_save, save_path, '', dtype = 'UINT16', compression = '' )