Пример #1
0
def _div_np(fld, bnd=True):
    """2nd order centeral diff, 1st order @ boundaries if bnd"""
    if fld.iscentered("Face"):
        # dispatch fc div immediately since that does its own pre-processing
        return viscid.div_fc(fld, bnd=bnd)

    if bnd:
        fld = viscid.extend_boundaries(fld, order=0, crd_order=0)

    vx, vy, vz = fld.component_views()

    if fld.iscentered("Cell"):
        crdx, crdy, crdz = fld.get_crds_cc(shaped=True)
        divcenter = "Cell"
        # divcrds = coordinate.NonuniformCartesianCrds(fld.crds.get_clist(np.s_[1:-1]))
        divcrds = fld.crds.slice_keep(np.s_[1:-1, 1:-1, 1:-1])
    elif fld.iscentered("Node"):
        crdx, crdy, crdz = fld.get_crds_nc(shaped=True)
        divcenter = "Node"
        # divcrds = coordinate.NonuniformCartesianCrds(fld.crds.get_clist(np.s_[1:-1]))
        divcrds = fld.crds.slice_keep(np.s_[1:-1, 1:-1, 1:-1])
    else:
        raise NotImplementedError("Can only do cell and node centered divs")

    xp, xm = crdx[2:, :, :], crdx[:-2, :, :]  # pylint: disable=bad-whitespace
    yp, ym = crdy[:, 2:, :], crdy[:, :-2, :]  # pylint: disable=bad-whitespace
    zp, zm = crdz[:, :, 2:], crdz[:, :, :-2]  # pylint: disable=bad-whitespace

    vxp, vxm = vx[2:, 1:-1, 1:-1], vx[:-2, 1:-1, 1:-1]  # pylint: disable=bad-whitespace
    vyp, vym = vy[1:-1, 2:, 1:-1], vy[1:-1, :-2, 1:-1]  # pylint: disable=bad-whitespace
    vzp, vzm = vz[1:-1, 1:-1, 2:], vz[1:-1, 1:-1, :-2]  # pylint: disable=bad-whitespace

    div_arr = ((vxp - vxm) / (xp - xm) + (vyp - vym) / (yp - ym) +
               (vzp - vzm) / (zp - zm))
    return field.wrap_field(div_arr,
                            divcrds,
                            name="div " + fld.name,
                            center=divcenter,
                            time=fld.time,
                            parents=[fld])
Пример #2
0
def div(fld, bnd=True):
    """2nd order centeral diff, 1st order @ boundaries if bnd"""
    if fld.iscentered("Face"):
        # dispatch fc div immediately since that does its own pre-processing
        return viscid.div_fc(fld, bnd=bnd)

    if bnd:
        fld = viscid.extend_boundaries(fld, order=0, crd_order=0)

    vx, vy, vz = fld.component_views()

    if fld.iscentered("Cell"):
        crdx, crdy, crdz = fld.get_crds_cc(shaped=True)
        divcenter = "Cell"
        # divcrds = coordinate.NonuniformCartesianCrds(fld.crds.get_clist(np.s_[1:-1]))
        divcrds = fld.crds.slice_keep(np.s_[1:-1, 1:-1, 1:-1])
    elif fld.iscentered("Node"):
        crdx, crdy, crdz = fld.get_crds_nc(shaped=True)
        divcenter = "Node"
        # divcrds = coordinate.NonuniformCartesianCrds(fld.crds.get_clist(np.s_[1:-1]))
        divcrds = fld.crds.slice_keep(np.s_[1:-1, 1:-1, 1:-1])
    else:
        raise NotImplementedError("Can only do cell and node centered divs")

    xp, xm = crdx[2:,  :,  :], crdx[:-2, :  , :  ]  # pylint: disable=bad-whitespace
    yp, ym = crdy[ :, 2:,  :], crdy[:  , :-2, :  ]  # pylint: disable=bad-whitespace
    zp, zm = crdz[ :,  :, 2:], crdz[:  , :  , :-2]  # pylint: disable=bad-whitespace

    vxp, vxm = vx[2:  , 1:-1, 1:-1], vx[ :-2, 1:-1, 1:-1]  # pylint: disable=bad-whitespace
    vyp, vym = vy[1:-1, 2:  , 1:-1], vy[1:-1,  :-2, 1:-1]  # pylint: disable=bad-whitespace
    vzp, vzm = vz[1:-1, 1:-1, 2:  ], vz[1:-1, 1:-1,  :-2]  # pylint: disable=bad-whitespace

    div_arr = ne.evaluate("(vxp-vxm)/(xp-xm) + (vyp-vym)/(yp-ym) + "
                          "(vzp-vzm)/(zp-zm)")
    return field.wrap_field(div_arr, divcrds, name="div " + fld.name,
                            center=divcenter, time=fld.time, parents=[fld])
Пример #3
0
def main():
    mhd_type = "C"
    make_plots = 1
    test_fc = 1
    test_ec = 1
    test_div = 1

    mhd_type = mhd_type.upper()
    if mhd_type.startswith("C"):
        if mhd_type in ("C",):
            f = viscid.load_file("$WORK/tmedium/*.3d.[-1].xdmf")
        elif mhd_type in ("C2", "C3"):
            f = viscid.load_file("$WORK/tmedium2/*.3d.[-1].xdmf")
        else:
            raise ValueError()
        catol = 1e-8
        rtol = 2.2e-6
    elif mhd_type in ("F", "FORTRAN"):
        f = viscid.load_file("$WORK/tmedium3/*.3df.[-1]")
        catol = 1e-8
        rtol = 7e-2
    else:
        raise ValueError()

    ISLICE = slice(None)
    # ISLICE = 'y=0f:0.15f'

    # #################
    # # test out fc2cc
    if test_fc:
        b = f['b'][ISLICE]
        b1 = f['b1'][ISLICE]

        compare_vectors(b, b1, viscid.fc2cc, catol=catol, rtol=rtol,
                        make_plots=make_plots)

    #################
    # test out ec2cc
    if test_ec:
        e_cc = f['e_cc'][ISLICE]
        e_ec = f['e_ec'][ISLICE]

        if mhd_type not in ("F", "FORTRAN"):
            compare_vectors(e_cc, e_ec, viscid.ec2cc, catol=catol, rtol=rtol,
                            make_plots=make_plots)

    #################
    # test out divfc
    # Note: Relative error on Div B is meaningless b/c the coordinates
    #       are not the same up to order (dx/4) I think. You can see this
    #       since (fcdiv - divb_trimmed) is both noisy and stripy
    if test_div:
        bnd = 0

        if mhd_type not in ("F", "FORTRAN"):
            b1 = f['b1'][ISLICE]
            divb = f['divB'][ISLICE]
            if bnd:
                trimmed = divb
            else:
                trimmed = divb['x=1:-1, y=1:-1, z=1:-1']
            b1mag = viscid.magnitude(viscid.fc2cc(b1, bnd=bnd))

            divb1 = viscid.div_fc(b1, bnd=bnd)

            viscid.set_in_region(trimmed, trimmed, alpha=0.0, beta=0.0, out=trimmed,
                                 mask=viscid.make_spherical_mask(trimmed, rmax=5.0))
            viscid.set_in_region(divb1, divb1, alpha=0.0, beta=0.0, out=divb1,
                                 mask=viscid.make_spherical_mask(divb1, rmax=5.0))

            reldiff = (divb1 - trimmed) / b1mag
            reldiff = reldiff["x=1:-1, y=1:-1, z=1:-1"]
            reldiff.name = divb1.name + " - " + trimmed.name
            reldiff.pretty_name = divb1.pretty_name + " - " + trimmed.pretty_name

            abs_max_rel_diff = np.nanmax(np.abs(reldiff))
            max_crd_diff = [0.0] * 3
            for i, d in enumerate('xyz'):
                max_crd_diff[i] = np.max(trimmed.get_crd(d) - divb1.get_crd(d))
            print("divB max absolute relative diff: {0:.3e} "
                  "(crds: X: {1[0]:.3e}, Y: {1[1]:.3e}, Z: {1[2]:.3e})"
                  "".format(abs_max_rel_diff, max_crd_diff))

            # plot differences?
            if make_plots:
                ax1 = mpl.plt.subplot(311)
                mpl.plot(divb['y=0f'], symmetric=True, earth=True)
                mpl.plt.subplot(312, sharex=ax1, sharey=ax1)
                mpl.plot(divb1['y=0f'], symmetric=True, earth=True)
                mpl.plt.subplot(313, sharex=ax1, sharey=ax1)
                mpl.plot(reldiff['y=0f'], symmetric=True, earth=True)
                mpl.show()

            # Since the coordinates will be different by order dx^2 (i think),
            # there is no way to compare the divB from simulation with the
            # one we get here. However, they should be the same up to a few %, and
            # down to noise level with stripes of enhanced noise. These stripes
            # are the errors in the coordinate values (since the output only
            # gives us weird nc = averaged cc locations)
            #
            # if abs_max_rel_diff > rtol or np.any(np.abs(max_crd_diff) > catol):
            #     raise RuntimeError("Tolerance exceeded on divB calculation")

    return 0
Пример #4
0
def main():
    mhd_type = "C"
    make_plots = 1
    test_fc = 1
    test_ec = 1
    test_div = 1
    test_interp = 1
    test_streamline = 1

    mhd_type = mhd_type.upper()
    if mhd_type.startswith("C"):
        if mhd_type in ("C",):
            f = viscid.load_file("$WORK/tmedium/*.3d.[-1].xdmf")
        elif mhd_type in ("C2", "C3"):
            f = viscid.load_file("$WORK/tmedium2/*.3d.[-1].xdmf")
        else:
            raise ValueError()
        catol = 1e-8
        rtol = 5e-6
    elif mhd_type in ("F", "FORTRAN"):
        f = viscid.load_file("$WORK/tmedium3/*.3df.[-1]")
        catol = 1e-8
        rtol = 7e-2
    else:
        raise ValueError()

    ISLICE = slice(None)
    # ISLICE = 'y=0j:0.15j'

    # #################
    # # test out fc2cc
    if test_fc:
        b = f['b'][ISLICE]
        b1 = f['b1'][ISLICE]

        compare_vectors(b, b1, viscid.fc2cc, catol=catol, rtol=rtol,
                        make_plots=make_plots)

    #################
    # test out ec2cc
    if test_ec:
        e_cc = f['e_cc'][ISLICE]
        e_ec = f['e_ec'][ISLICE]

        if mhd_type not in ("F", "FORTRAN"):
            compare_vectors(e_cc, e_ec, viscid.ec2cc, catol=catol, rtol=rtol,
                            make_plots=make_plots)

    #################
    # test out divfc
    # Note: Relative error on Div B is meaningless b/c the coordinates
    #       are not the same up to order (dx/4) I think. You can see this
    #       since (fcdiv - divb_trimmed) is both noisy and stripy
    if test_div:
        bnd = 0

        if mhd_type not in ("F", "FORTRAN"):
            b1 = f['b1'][ISLICE]
            divb = f['divB'][ISLICE]
            if bnd:
                trimmed = divb
            else:
                trimmed = divb['x=1:-1, y=1:-1, z=1:-1']
            b1mag = viscid.magnitude(viscid.fc2cc(b1, bnd=bnd))

            divb1 = viscid.div_fc(b1, bnd=bnd)

            viscid.set_in_region(trimmed, trimmed, alpha=0.0, beta=0.0, out=trimmed,
                                 mask=viscid.make_spherical_mask(trimmed, rmax=5.0))
            viscid.set_in_region(divb1, divb1, alpha=0.0, beta=0.0, out=divb1,
                                 mask=viscid.make_spherical_mask(divb1, rmax=5.0))

            reldiff = (divb1 - trimmed) / b1mag
            reldiff = reldiff["x=1:-1, y=1:-1, z=1:-1"]
            reldiff.name = divb1.name + " - " + trimmed.name
            reldiff.pretty_name = divb1.pretty_name + " - " + trimmed.pretty_name

            abs_max_rel_diff = np.nanmax(np.abs(reldiff))
            max_crd_diff = [0.0] * 3
            for i, d in enumerate('xyz'):
                max_crd_diff[i] = np.max(trimmed.get_crd(d) - divb1.get_crd(d))
            print("divB max absolute relative diff: {0:.3e} "
                  "(crds: X: {1[0]:.3e}, Y: {1[1]:.3e}, Z: {1[2]:.3e})"
                  "".format(abs_max_rel_diff, max_crd_diff))

            # plot differences?
            if make_plots:
                ax1 = plt.subplot(311)
                vlt.plot(divb['y=0j'], symmetric=True, earth=True)
                plt.subplot(312, sharex=ax1, sharey=ax1)
                vlt.plot(divb1['y=0j'], symmetric=True, earth=True)
                plt.subplot(313, sharex=ax1, sharey=ax1)
                vlt.plot(reldiff['y=0j'], symmetric=True, earth=True)
                vlt.show()

            # Since the coordinates will be different by order dx^2 (i think),
            # there is no way to compare the divB from simulation with the
            # one we get here. However, they should be the same up to a few %, and
            # down to noise level with stripes of enhanced noise. These stripes
            # are the errors in the coordinate values (since the output only
            # gives us weird nc = averaged cc locations)
            #
            # if abs_max_rel_diff > rtol or np.any(np.abs(max_crd_diff) > catol):
            #     raise RuntimeError("Tolerance exceeded on divB calculation")

    if test_streamline:
        b_cc = f['b_cc']['x=-40j:12j, y=-15j:15j, z=-15j:15j']
        b_fc = f['b_fc']['x=-40j:12j, y=-15j:15j, z=-15j:15j']

        cotr = viscid.cotr.Cotr()
        r_mask = 3.0
        # set b_cc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_cc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_cc)
        viscid.fill_dipole(b_cc, m=moment, mask=isphere_mask)
        # set b_fc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_fc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_fc)
        viscid.fill_dipole(b_fc, m=moment, mask=isphere_mask)

        seeds = viscid.Volume([-10, 0, -5], [10, 0, 5], (16, 1, 3))
        sl_kwargs = dict(ibound=1.0, method=viscid.EULER1A)
        lines_cc, topo_cc = viscid.calc_streamlines(b_cc, seeds, **sl_kwargs)
        lines_fc, topo_fc = viscid.calc_streamlines(b_fc, seeds, **sl_kwargs)

        if make_plots:
            plt.figure(figsize=(10, 6))

            ax0 = plt.subplot(211)
            topo_cc_colors = viscid.topology2color(topo_cc)
            vlt.plot(f['pp']['y=0j'], logscale=True, earth=True, cmap='plasma')
            vlt.plot2d_lines(lines_cc, topo_cc_colors, symdir='y')

            ax0 = plt.subplot(212, sharex=ax0, sharey=ax0)
            topo_fc_colors = viscid.topology2color(topo_fc)
            vlt.plot(f['pp']['y=0j'], logscale=True, earth=True, cmap='plasma')
            vlt.plot2d_lines(lines_fc, topo_fc_colors, symdir='y')

            plt.xlim(-20, 10)
            plt.ylim(-10, 10)
            vlt.auto_adjust_subplots()
            vlt.show()

    if test_interp:
        # test interpolation with E . B / B
        b_cc = f['b_cc']
        b_fc = f['b_fc']
        e_cc = f['e_cc']
        e_ec = f['e_ec']

        cotr = viscid.cotr.Cotr()
        r_mask = 3.0
        # set b_cc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_cc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_cc)
        viscid.fill_dipole(b_cc, m=moment, mask=isphere_mask)
        # set b_fc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_fc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_fc)
        viscid.fill_dipole(b_fc, m=moment, mask=isphere_mask)
        # zero out e_cc inside some sphere
        viscid.set_in_region(e_cc, e_cc, alpha=0.0, beta=0.0, out=e_cc,
                             mask=viscid.make_spherical_mask(e_cc, rmax=r_mask))
        # zero out e_ec inside some sphere
        viscid.set_in_region(e_ec, e_ec, alpha=0.0, beta=0.0, out=e_ec,
                             mask=viscid.make_spherical_mask(e_ec, rmax=r_mask))

        tmp = viscid.empty([np.linspace(-10, 10, 64), np.linspace(-10, 10, 64),
                            np.linspace(-10, 10, 64)], center="Cell")

        b_cc_interp = viscid.interp_linear(b_cc, tmp)
        b_fc_interp = viscid.interp_linear(b_fc, tmp)
        e_cc_interp = viscid.interp_linear(e_cc, tmp)
        e_ec_interp = viscid.interp_linear(e_ec, tmp)

        epar_cc = viscid.dot(e_cc_interp, b_cc_interp) / viscid.magnitude(b_cc_interp)
        epar_ecfc = viscid.dot(e_ec_interp, b_fc_interp) / viscid.magnitude(b_fc_interp)

        if make_plots:
            # plt.figure()
            # ax0 = plt.subplot(121)
            # vlt.plot(b_cc['x']['y=0j'], clim=(-40, 40))
            # plt.subplot(122, sharex=ax0, sharey=ax0)
            # vlt.plot(b_fc['x']['y=0j'], clim=(-40, 40))
            # vlt.show()

            plt.figure(figsize=(14, 5))
            ax0 = plt.subplot(131)
            vlt.plot(epar_cc['y=0j'], symmetric=True, cbarlabel="Epar CC")
            plt.subplot(132, sharex=ax0, sharey=ax0)
            vlt.plot(epar_ecfc['y=0j'], symmetric=True, cbarlabel="Epar ECFC")
            plt.subplot(133, sharex=ax0, sharey=ax0)
            vlt.plot(((epar_cc - epar_ecfc) / epar_cc)['y=0j'], clim=(-10, 10),
                     cbarlabel="Rel Diff")
            vlt.auto_adjust_subplots()
            vlt.show()

    return 0
Пример #5
0
def main():
    mhd_type = "C"
    make_plots = 1
    test_fc = 1
    test_ec = 1
    test_div = 1
    test_interp = 1
    test_streamline = 1

    mhd_type = mhd_type.upper()
    if mhd_type.startswith("C"):
        if mhd_type in ("C", ):
            f = viscid.load_file("$WORK/tmedium/*.3d.[-1].xdmf")
        elif mhd_type in ("C2", "C3"):
            f = viscid.load_file("$WORK/tmedium2/*.3d.[-1].xdmf")
        else:
            raise ValueError()
        catol = 1e-8
        rtol = 5e-6
    elif mhd_type in ("F", "FORTRAN"):
        f = viscid.load_file("$WORK/tmedium3/*.3df.[-1]")
        catol = 1e-8
        rtol = 7e-2
    else:
        raise ValueError()

    ISLICE = slice(None)
    # ISLICE = 'y=0f:0.15f'

    # #################
    # # test out fc2cc
    if test_fc:
        b = f['b'][ISLICE]
        b1 = f['b1'][ISLICE]

        compare_vectors(b,
                        b1,
                        viscid.fc2cc,
                        catol=catol,
                        rtol=rtol,
                        make_plots=make_plots)

    #################
    # test out ec2cc
    if test_ec:
        e_cc = f['e_cc'][ISLICE]
        e_ec = f['e_ec'][ISLICE]

        if mhd_type not in ("F", "FORTRAN"):
            compare_vectors(e_cc,
                            e_ec,
                            viscid.ec2cc,
                            catol=catol,
                            rtol=rtol,
                            make_plots=make_plots)

    #################
    # test out divfc
    # Note: Relative error on Div B is meaningless b/c the coordinates
    #       are not the same up to order (dx/4) I think. You can see this
    #       since (fcdiv - divb_trimmed) is both noisy and stripy
    if test_div:
        bnd = 0

        if mhd_type not in ("F", "FORTRAN"):
            b1 = f['b1'][ISLICE]
            divb = f['divB'][ISLICE]
            if bnd:
                trimmed = divb
            else:
                trimmed = divb['x=1:-1, y=1:-1, z=1:-1']
            b1mag = viscid.magnitude(viscid.fc2cc(b1, bnd=bnd))

            divb1 = viscid.div_fc(b1, bnd=bnd)

            viscid.set_in_region(trimmed,
                                 trimmed,
                                 alpha=0.0,
                                 beta=0.0,
                                 out=trimmed,
                                 mask=viscid.make_spherical_mask(trimmed,
                                                                 rmax=5.0))
            viscid.set_in_region(divb1,
                                 divb1,
                                 alpha=0.0,
                                 beta=0.0,
                                 out=divb1,
                                 mask=viscid.make_spherical_mask(divb1,
                                                                 rmax=5.0))

            reldiff = (divb1 - trimmed) / b1mag
            reldiff = reldiff["x=1:-1, y=1:-1, z=1:-1"]
            reldiff.name = divb1.name + " - " + trimmed.name
            reldiff.pretty_name = divb1.pretty_name + " - " + trimmed.pretty_name

            abs_max_rel_diff = np.nanmax(np.abs(reldiff))
            max_crd_diff = [0.0] * 3
            for i, d in enumerate('xyz'):
                max_crd_diff[i] = np.max(trimmed.get_crd(d) - divb1.get_crd(d))
            print("divB max absolute relative diff: {0:.3e} "
                  "(crds: X: {1[0]:.3e}, Y: {1[1]:.3e}, Z: {1[2]:.3e})"
                  "".format(abs_max_rel_diff, max_crd_diff))

            # plot differences?
            if make_plots:
                ax1 = plt.subplot(311)
                vlt.plot(divb['y=0f'], symmetric=True, earth=True)
                plt.subplot(312, sharex=ax1, sharey=ax1)
                vlt.plot(divb1['y=0f'], symmetric=True, earth=True)
                plt.subplot(313, sharex=ax1, sharey=ax1)
                vlt.plot(reldiff['y=0f'], symmetric=True, earth=True)
                vlt.show()

            # Since the coordinates will be different by order dx^2 (i think),
            # there is no way to compare the divB from simulation with the
            # one we get here. However, they should be the same up to a few %, and
            # down to noise level with stripes of enhanced noise. These stripes
            # are the errors in the coordinate values (since the output only
            # gives us weird nc = averaged cc locations)
            #
            # if abs_max_rel_diff > rtol or np.any(np.abs(max_crd_diff) > catol):
            #     raise RuntimeError("Tolerance exceeded on divB calculation")

    if test_streamline:
        b_cc = f['b_cc']['x=-40f:12f, y=-15f:15f, z=-15f:15f']
        b_fc = f['b_fc']['x=-40f:12f, y=-15f:15f, z=-15f:15f']

        cotr = viscid.cotr.Cotr()
        r_mask = 3.0
        # set b_cc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_cc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_cc)
        viscid.fill_dipole(b_cc, m=moment, mask=isphere_mask)
        # set b_fc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_fc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_fc)
        viscid.fill_dipole(b_fc, m=moment, mask=isphere_mask)

        seeds = viscid.Volume([-10, 0, -5], [10, 0, 5], (16, 1, 3))
        sl_kwargs = dict(ibound=1.0, method=viscid.EULER1A)
        lines_cc, topo_cc = viscid.calc_streamlines(b_cc, seeds, **sl_kwargs)
        lines_fc, topo_fc = viscid.calc_streamlines(b_fc, seeds, **sl_kwargs)

        if make_plots:
            plt.figure(figsize=(10, 6))

            ax0 = plt.subplot(211)
            topo_cc_colors = viscid.topology2color(topo_cc)
            vlt.plot(f['pp']['y=0f'], logscale=True, earth=True, cmap='plasma')
            vlt.plot2d_lines(lines_cc, topo_cc_colors, symdir='y')

            ax0 = plt.subplot(212, sharex=ax0, sharey=ax0)
            topo_fc_colors = viscid.topology2color(topo_fc)
            vlt.plot(f['pp']['y=0f'], logscale=True, earth=True, cmap='plasma')
            vlt.plot2d_lines(lines_fc, topo_fc_colors, symdir='y')

            plt.xlim(-20, 10)
            plt.ylim(-10, 10)
            vlt.auto_adjust_subplots()
            vlt.show()

    if test_interp:
        # test interpolation with E . B / B
        b_cc = f['b_cc']
        b_fc = f['b_fc']
        e_cc = f['e_cc']
        e_ec = f['e_ec']

        cotr = viscid.cotr.Cotr()
        r_mask = 3.0
        # set b_cc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_cc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_cc)
        viscid.fill_dipole(b_cc, m=moment, mask=isphere_mask)
        # set b_fc to dipole inside some sphere
        isphere_mask = viscid.make_spherical_mask(b_fc, rmax=r_mask)
        moment = cotr.get_dipole_moment(crd_system=b_fc)
        viscid.fill_dipole(b_fc, m=moment, mask=isphere_mask)
        # zero out e_cc inside some sphere
        viscid.set_in_region(e_cc,
                             e_cc,
                             alpha=0.0,
                             beta=0.0,
                             out=e_cc,
                             mask=viscid.make_spherical_mask(e_cc,
                                                             rmax=r_mask))
        # zero out e_ec inside some sphere
        viscid.set_in_region(e_ec,
                             e_ec,
                             alpha=0.0,
                             beta=0.0,
                             out=e_ec,
                             mask=viscid.make_spherical_mask(e_ec,
                                                             rmax=r_mask))

        tmp = viscid.empty([
            np.linspace(-10, 10, 64),
            np.linspace(-10, 10, 64),
            np.linspace(-10, 10, 64)
        ],
                           center="Cell")

        b_cc_interp = viscid.interp_linear(b_cc, tmp)
        b_fc_interp = viscid.interp_linear(b_fc, tmp)
        e_cc_interp = viscid.interp_linear(e_cc, tmp)
        e_ec_interp = viscid.interp_linear(e_ec, tmp)

        epar_cc = viscid.dot(e_cc_interp,
                             b_cc_interp) / viscid.magnitude(b_cc_interp)
        epar_ecfc = viscid.dot(e_ec_interp,
                               b_fc_interp) / viscid.magnitude(b_fc_interp)

        if make_plots:
            # plt.figure()
            # ax0 = plt.subplot(121)
            # vlt.plot(b_cc['x']['y=0f'], clim=(-40, 40))
            # plt.subplot(122, sharex=ax0, sharey=ax0)
            # vlt.plot(b_fc['x']['y=0f'], clim=(-40, 40))
            # vlt.show()

            plt.figure(figsize=(14, 5))
            ax0 = plt.subplot(131)
            vlt.plot(epar_cc['y=0f'], symmetric=True, cbarlabel="Epar CC")
            plt.subplot(132, sharex=ax0, sharey=ax0)
            vlt.plot(epar_ecfc['y=0f'], symmetric=True, cbarlabel="Epar ECFC")
            plt.subplot(133, sharex=ax0, sharey=ax0)
            vlt.plot(((epar_cc - epar_ecfc) / epar_cc)['y=0f'],
                     clim=(-10, 10),
                     cbarlabel="Rel Diff")
            vlt.auto_adjust_subplots()
            vlt.show()

    return 0