Пример #1
0
 def __sub__(self, other):
     if isinstance(other, Constant):
         self = self + Constant(-1, 1, 1) * other
         return self
     elif isinstance(other, Variable):
         if self.value == 0:
             other.coefficient *= -1
             return other
         expression = Expression()
         expression.tokens = [self]
         expression.tokens.extend([Minus(), other])
     elif isinstance(other, Expression):
         expression = Expression()
         expression.tokens = [self]
         if other.power == 1:
             coeff = other.coefficient
             for i, token in enumerate(other.tokens):
                 print(expression, " ", type(token), other.tokens[i-1])
                 if isinstance(token, Constant):
                     if other.tokens[i-1].value == '+' or i == 0:
                         expression.tokens[0] = Constant(self.calculate() - token.calculate()*coeff)
                     elif other.tokens[i-1].value == '-':
                         expression.tokens[0] = Constant(self.calculate() + token.calculate()*coeff)
                 elif isinstance(token, Variable):
                     if other.tokens[i-1].value == '+' or i == 0:
                         expression.tokens.extend([Minus(), Variable(token)])
                     elif other.tokens[i-1].value == '-':
                         expression.tokens.extend([Plus(), Variable(token)])
         else:
             expression.tokens.extend([Minus(), other])
     self = expression
     return expression
Пример #2
0
 def __sub__(self, other):
     from visma.functions.constant import Constant
     if isinstance(other, Variable):
         otherValueSorted = sorted(other.value)
         selfValueSorted = sorted(self.value)
         if (other.power == self.power) & (selfValueSorted
                                           == otherValueSorted):
             self = self + Constant(-1, 1, 1) * other
             return self
         else:
             expression = Expression()
             expression.tokens = [self]
             expression.tokens.extend([Minus(), other])
             self = expression
             return expression
     elif isinstance(other, Constant):
         if other.isZero():
             return self
         expression = Expression()
         expression.tokens = [self]
         expression.tokens.extend([Minus(), other])
         self = expression
         return expression
     elif isinstance(other, Expression):
         expression = Expression()
         expression.tokens = [self]
         for i, token in enumerate(other.tokens):
             if isinstance(token, Variable):
                 tokenValueSorted = sorted(token.value)
                 selfValueSorted = sorted(self.value)
                 if (token.power == self.power) & (tokenValueSorted
                                                   == selfValueSorted):
                     if other.tokens[i - 1].value == '+' or (i == 0):
                         self.coefficient -= other.tokens[i].coefficient
                     elif other.tokens[i - 1].value == '-':
                         self.coefficient += other.tokens[i].coefficient
                 else:
                     if other.tokens[i - 1].value == '+' or i == 0:
                         expression.tokens.extend([Plus(), Variable(token)])
                     elif other.tokens[i - 1].value == '-':
                         expression.tokens.extend(
                             [Minus(), Variable(token)])
             elif not isinstance(token, Binary):
                 if other.tokens[i - 1].value == '+' or (i == 0):
                     expression.tokens.extend([Minus(), token])
                 elif other.tokens[i - 1].value == '-':
                     expression.tokens.extend([Plus(), token])
         expression.tokens[0] = self
         self = expression
         return expression
Пример #3
0
 def integrate(self, wrtVar):
     term1 = Constant(-1, 1, 1)
     term2 = NaturalLog()
     result = Expression()
     term3 = Cosecant()
     term3.operand = self.operand
     term4 = Cotangent()
     term4.operand = self.operand
     inExpression = Expression()
     inExpression.tokens = [term3, Plus(), term4]
     term2.operand = inExpression
     term2.power = 1
     term2.coefficient = 1
     result.tokens = [term1, Multiply(), term2]
     return result
Пример #4
0
 def differentiate(self, wrtVar):
     term1 = Constant(-1, 1, 1)
     term2 = copy.deepcopy(self)
     term2.__class__ = Sine
     term2.value = 'sin'
     result = Expression()
     result.tokens = [term1, Multiply(), term2]
     return result
Пример #5
0
 def integrate(self, wrtVar=None):
     term1 = Constant(-1, 1, 1)
     term2 = copy.deepcopy(self)
     term2.__class__ = Cosine
     term2.value = 'cos'
     term2.coefficient = 1
     result = Expression()
     result.tokens = [term1, Multiply(), term2]
     return result
Пример #6
0
 def differentiate(self, wrtVar):
     term1 = Constant(-1, 1, 1)
     term2 = copy.deepcopy(self)
     term2.__class__ = Cosecant
     term2.value = 'csc'
     term2.coefficient = 1
     term2.power = 2
     result = Expression()
     result.tokens = [term1, Multiply(), term2]
     return result
Пример #7
0
 def differentiate(self, wrtVar):
     term1 = Constant(-1, 1, 1)
     term2 = Cosecant()
     term2.operand = self.operand
     term2.coefficient = 1
     term3 = Cotangent()
     term3.operand = self.operand
     term3.coefficient = 1
     result = Expression()
     result.tokens = [term1, Multiply(), term2, Multiply(), term3]
     return result
Пример #8
0
 def integrate(self, wrtVar):
     term1 = Constant(-1, 1, 1)
     term2 = NaturalLog()
     term3 = Cosine()
     term3.operand = self.operand
     term2.operand = term3
     term2.power = 1
     term2.coefficient = 1
     result = Expression()
     result.tokens = [term1, Multiply(), term2]
     return result
Пример #9
0
 def integrate(self, wrtVar):
     resultTerm = NaturalLog()
     term3 = Secant()
     term3.operand = self.operand
     term4 = Tangent()
     term4.operand = self.operand
     inExpression = Expression()
     inExpression.tokens = [term3, Plus(), term4]
     resultTerm.operand = inExpression
     resultTerm.power = 1
     resultTerm.coefficient = 1
     return resultTerm
Пример #10
0
    def __truediv__(self, other):
        from visma.functions.constant import Constant
        if isinstance(other, Variable) or isinstance(other, Constant):
            self = self * (other**Constant(-1, 1, 1))
            return self

        elif isinstance(other, Expression):
            expression = Expression()
            self.coefficient /= other.coefficient
            other.power *= -1
            expression.tokens = [self]
            expression.tokens.extend([Multiply(), other])
            self = expression
            return expression
Пример #11
0
def differentiationProductRule(tokens, wrtVar):
    resultTokens = []
    for i in range(0, len(tokens), 2):
        currentDiff = Expression()
        currentDiffTokens, _, _, _, _ = differentiate([tokens[i]], wrtVar)
        currentDiff.tokens = currentDiffTokens
        tempTokens = copy.deepcopy(tokens)
        tempTokens[i] = currentDiff
        resultTokens.extend(tempTokens)
        resultTokens.append(Plus())
    resultTokens.pop()
    token_string = tokensToString(resultTokens)
    # TODO: Make simplify module to simplify expressions involving Trigonometric Expressions (to some extent)
    # resultTokens, _, token_string, _, _ = simplify(resultTokens)
    return tokens, [], token_string, [], []
Пример #12
0
def differentiateTokens(funclist, wrtVar):
    """Differentiates given tokens wrt given variable

    Arguments:
        funclist {list} -- list of function tokens
        wrtVar {string} -- with respect to variable

    Returns:
        diffFunc {list} -- list of differentiated tokens
        animNew {list} -- equation tokens for step-by-step
        commentsNew {list} -- comments for step-by-step
    """
    diffFunc = []
    animNew = []
    commentsNew = ["Differentiating with respect to " + r"$" + wrtVar + r"$" + "\n"]
    for func in funclist:
        if isinstance(func, Operator):
            diffFunc.append(func)
        else:
            newExpression = Expression()
            newfunc = []
            while(isinstance(func, Function)):
                commentsNew[0] += r"$" + "\\frac{d}{d" + wrtVar + "} ( " + func.__str__() + ")" + r"$"
                funcCopy = copy.deepcopy(func)
                if wrtVar in funcCopy.functionOf():
                    if isinstance(funcCopy, Trigonometric) or isinstance(funcCopy, Logarithm) or isinstance(funcCopy, Variable) or isinstance(funcCopy, Exponential):
                        funcCopy = funcCopy.differentiate(wrtVar)
                        newfunc.append(funcCopy)
                        commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
                else:
                    funcCopy = Zero()
                    newfunc.append(funcCopy)
                    commentsNew[0] += r"$" + r"= " + funcCopy.__str__() + r"\ ;\ " + r"$"
                newfunc.append(Multiply())
                if func.operand is None:
                    break
                else:
                    func = func.operand
                    if isinstance(func, Constant):
                        diffFunc = Zero()
                        break
            newfunc.pop()
            newExpression.tokens = newfunc
            diffFunc.extend([newExpression])
    animNew.extend(diffFunc)
    return diffFunc, animNew, commentsNew
Пример #13
0
 def integrate(self, wrtVar):
     if wrtVar not in self.value:
         self.value.append(wrtVar)
         self.power.append(1)
     else:
         for i, val in enumerate(self.value):
             if val == 'wrtVar':
                 break
         if self.power[i] == -1:
             self.power.pop(i)
             self.value.pop(i)
             expression = Expression()
             expression.tokens = [self]
             variable = Variable(1, 'wrtVar', 1)
             expression.tokens.append(Logarithm(variable))
             self.__class__ = Expression
             self = expression
         else:
             self.coefficient /= self.power[i] + 1
             self.power[i] += 1
Пример #14
0
def cubicRoots(lTokens, rTokens):
    '''Used to get roots of a cubic equation
    This functions also translates roots {list} into final result of solution

    Argument:
        lTokens {list} -- list of LHS tokens
        rTokens {list} -- list of RHS tokens

    Returns:
        lTokens {list} -- list of LHS tokens
        rTokens {list} -- list of RHS tokens
        {empty list}
        token_string {string} -- final result stored in a string
        animation {list} -- list of equation solving process
        comments {list} -- list of comments in equation solving process
    '''
    from visma.solvers.polynomial.roots import getCoefficients

    animations = []
    comments = []
    lTokens, rTokens, _, token_string, animNew1, commentNew1 = simplifyEquation(
        lTokens, rTokens)
    animations.extend(animNew1)
    comments.extend(commentNew1)
    if len(rTokens) > 0:
        lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens)
    coeffs = getCoefficients(lTokens, rTokens, 3)
    var = getVariables(lTokens)
    roots, animNew2, commentNew2 = getRootsCubic(coeffs)
    animations.extend(animNew2)
    comments.extend(commentNew2)
    tokens1 = []
    expression1 = Expression(coefficient=1, power=3)
    variable = Variable(1, var[0], 1)
    tokens1.append(variable)
    if roots[0][1] == 0:
        binary = Binary()
        if roots[0][0] < 0:
            roots[0][0] *= -1
            binary.value = '+'
        else:
            binary.value = '-'
        tokens1.append(binary)
    constant = Constant(round(roots[0][0], ROUNDOFF), 1)
    tokens1.append(constant)

    expression1.tokens = tokens1
    lTokens = [expression1, Binary('*')]

    if len(roots) > 1:
        expression1.power = 1
        for _, root in enumerate(roots[1:]):
            tokens2 = []
            expression2 = Expression(coefficient=1, power=1)
            variable = Variable(1, var[0], 1)
            tokens2.append(variable)
            binary = Binary()
            if root[1] == 0:
                if root[0] < 0:
                    root[0] *= -1
                    binary.value = '+'
                else:
                    binary.value = '-'
                tokens2.append(binary)
                constant = Constant(round(root[0], ROUNDOFF), 1)
                tokens2.append(constant)
            else:
                binary.value = '-'
                tokens2.append(binary)
                expressionResult = Expression(coefficient=1, power=1)
                tokensResult = []
                real = Constant(round(root[0], ROUNDOFF), 1)
                tokensResult.append(real)
                imaginary = Constant(round(root[1], ROUNDOFF), 1)
                if imaginary.value < 0:
                    tokensResult.append(Minus())
                    imaginary.value = abs(imaginary.value)
                    tokensResult.append(imaginary)
                else:
                    tokensResult.extend([Plus(), imaginary])
                sqrt = Sqrt(Constant(2, 1), Constant(-1, 1))
                tokensResult.append(Binary('*'))
                tokensResult.append(sqrt)
                expressionResult.tokens = tokensResult
                tokens2.append(expressionResult)
            expression2.tokens = tokens2
            lTokens.extend([expression2, Binary('*')])
    lTokens.pop()
    rTokens = [Zero()]
    tokenToStringBuilder = copy.deepcopy(lTokens)
    tokLen = len(lTokens)
    equalTo = Binary()
    equalTo.scope = [tokLen]
    equalTo.value = '='
    tokenToStringBuilder.append(equalTo)
    tokenToStringBuilder.extend(rTokens)
    token_string = tokensToString(tokenToStringBuilder)
    animations.append(copy.deepcopy(tokenToStringBuilder))
    comments.append([])
    return lTokens, rTokens, [], token_string, animations, comments
Пример #15
0
def quadraticRoots(lTokens, rTokens):
    '''Used to get quadratic roots of an equation

    Argument:
        lTokens {list} -- list of LHS tokens
        rTokens {list} -- list of RHS tokens

    Returns:
        lTokens {list} -- list of LHS tokens
        rTokens {list} -- list of RHS tokens
        {empty list}
        token_string {string} -- final result stored in a string
        animation {list} -- list of equation solving process
        comments {list} -- list of comments in equation solving process
    '''
    from visma.solvers.polynomial.roots import getCoefficients

    animations = []
    comments = []
    lTokens, rTokens, _, token_string, animNew1, commentNew1 = simplifyEquation(lTokens, rTokens)
    animations.extend(animNew1)
    comments.extend(commentNew1)
    if len(rTokens) > 0:
        lTokens, rTokens = moveRTokensToLTokens(lTokens, rTokens)
    coeffs = getCoefficients(lTokens, rTokens, 2)
    var = getVariables(lTokens)
    roots, animNew2, commentNew2 = getRootsQuadratic(coeffs)
    animations.extend(animNew2)
    comments.extend(commentNew2)
    if len(roots) == 1:
        tokens = []
        expression = Expression(coefficient=1, power=2)
        variable = Variable(1, var[0], 1)
        tokens.append(variable)
        binary = Binary()
        if roots[0] < 0:
            roots[0] *= -1
            binary.value = '+'
        else:
            binary.value = '-'
        tokens.append(binary)
        constant = Constant(round(roots[0], ROUNDOFF), 1)
        tokens.append(constant)
        expression.tokens = tokens
        lTokens = [expression]

    elif len(roots) == 2:
        tokens = []
        expression = Expression(coefficient=1, power=1)
        variable = Variable(1, var[0], 1)
        tokens.append(variable)
        binary = Binary()
        if roots[0] < 0:
            roots[0] *= -1
            binary.value = '+'
        else:
            binary.value = '-'
        tokens.append(binary)
        constant = Constant(round(roots[0], ROUNDOFF), 1)
        tokens.append(constant)
        expression.tokens = tokens

        tokens2 = []
        expression2 = Expression(coefficient=1, power=1)
        tokens2.append(variable)
        binary2 = Binary()
        if roots[1] < 0:
            roots[1] *= -1
            binary2.value = '+'
        else:
            binary2.value = '-'
        tokens2.append(binary2)
        constant2 = Constant(round(roots[1], ROUNDOFF), 1)
        tokens2.append(constant2)
        expression2.tokens = tokens2

        binary3 = Binary()
        binary3.value = '*'
        lTokens = [expression, binary3, expression2]

    elif len(roots) == 3:
        binary4 = Binary()
        if roots[0] < 0:
            roots[0] *= -1
            binary4.value = '+'
        else:
            binary4.value = '-'

        constant3 = Constant(round(roots[0], ROUNDOFF), 1)

        binary5 = Binary()
        binary5.value = '*'

        constant2 = Constant(round(roots[2], ROUNDOFF), 1)

        tokens = []
        expression = Expression(coefficient=1, power=1)
        variable = Variable(1, var[0], 1)
        tokens.extend([variable, binary4, constant3])
        binary = Binary()
        binary.value = '+'
        tokens.extend([binary, constant2, binary5])
        constant = Constant(round(roots[1], ROUNDOFF), 1)
        sqrt = Sqrt(Constant(2, 1), constant)
        tokens.append(sqrt)
        expression.tokens = tokens

        tokens2 = []
        expression2 = Expression(coefficient=1, power=1)
        variable2 = Variable(1, var[0], 1)
        tokens2.extend([variable2, binary4, constant3])
        binary2 = Binary()
        binary2.value = '-'
        tokens2.extend([binary2, constant2, binary5, sqrt])
        expression2.tokens = tokens2
        binary3 = Binary()
        binary3.value = '*'
        lTokens = [expression, binary3, expression2]

    zero = Zero()
    rTokens = [zero]
    comments.append([])
    tokenToStringBuilder = copy.deepcopy(lTokens)
    tokLen = len(lTokens)
    equalTo = Binary()
    equalTo.scope = [tokLen]
    equalTo.value = '='
    tokenToStringBuilder.append(equalTo)
    tokenToStringBuilder.extend(rTokens)
    animations.append(copy.deepcopy(tokenToStringBuilder))
    token_string = tokensToString(tokenToStringBuilder)
    return lTokens, rTokens, [], token_string, animations, comments