def __init__( self, context, name, parent, # Standard visr component constructor arguments numberOfObjects, # The number of point source objects rendered. hoaOrder, # The Ambisonics order for encoding the objects channelAllocation=False # Whether to allocate object channels dynamically (not used at the moment) ): """ Constructor. Parameters ---------- numberOfObjects: int The maximum number of audio objects to be rendered. hoaOrder: int The Ambisonics order for encoding the objects. channelAllocation: bool, optional Whether to send dynamic channel allocation data. Not used at the moment. Default value means that the object channels are allocated statically and correspond to the obbject's channel id. """ # Call base class (AtomicComponent) constructor super(HoaObjectEncoder, self).__init__(context, name, parent) self.numberOfObjects = numberOfObjects self.hoaOrder = hoaOrder self.numHoaCoeffs = (self.hoaOrder + 1)**2 # %% Define parameter ports self.objectInput = visr.ParameterInput( "objectVector", self, pml.ObjectVector.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig()) self.objectInputProtocol = self.objectInput.protocolInput() matrixConfig = pml.MatrixParameterConfig(self.numHoaCoeffs, self.numberOfObjects) self.coefficientOutput = visr.ParameterOutput( "coefficientOutput", self, pml.MatrixParameterFloat.staticType, pml.SharedDataProtocol.staticType, matrixConfig) self.coefficientOutputProtocol = self.coefficientOutput.protocolOutput( ) if channelAllocation: self.channelAllocator = rbbl.ObjectChannelAllocator( self.numberOfObjects) self.usedChannels = set() # Initialised with an empty set. self.routingOutput = visr.ParameterOutput( "routingOutput", self, pml.SignalRoutingParameter.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig()) self.routingOutputProtocol = self.routingOutput.protocolOutput() else: self.routingOutputProtocol = None self.channelAllocator = None
def __init__( self, context, name, parent, processorConfig, objectVectorInput = True, # receive input as pml.ObjectVector parameters (as opposed to JSON) objectVectorOutput = True, # send output as pml.ObjectVector parameters (as opposed to JSON) oscControlPort = False, jsonControlPort = False, alwaysProcess = True, verbose = False): """ Construction function. """ super( Component, self ).__init__( context, name, parent ) if objectVectorInput: self.textInput = False self.objectInput = visr.ParameterInput( "objectIn", self, pml.ObjectVector.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig() ) else: self.textInput = True self.objectInput = visr.ParameterInput( "objectIn", self, pml.StringParameter.staticType, pml.MessageQueueProtocol.staticType, pml.EmptyParameterConfig() ) if objectVectorOutput: self.textOutput = False self.objectOutput = visr.ParameterOutput( "objectOut", self, pml.ObjectVector.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig() ) else: self.textOutput = True self.objectOutput = visr.ParameterOutput( "objectOut", self, pml.StringParameter.staticType, pml.MessageQueueProtocol.staticType, pml.EmptyParameterConfig() ) if oscControlPort: self.oscControlInput = visr.ParameterInput( "oscControlIn", self, pml.StringParameter.staticType, pml.MessageQueueProtocol.staticType, pml.EmptyParameterConfig() ) else: self.oscControlInput = None if jsonControlPort: self.jsonControlInput = visr.ParameterInput( "jsonControlIn", self, pml.StringParameter.staticType, pml.MessageQueueProtocol.staticType, pml.EmptyParameterConfig() ) else: self.jsonControlInput = None self._engine = Engine( processorConfig, alwaysProcess, verbose )
def __init__(self, context, name, parent, *, calibrationPort, **razorArgs): """ Constructor. context : visr.SignalFlowContext Standard visr.Component construction argument, a structure holding the block size and the sampling frequency name : string Name of the component, Standard visr.Component construction argument parent : visr.CompositeComponent Containing component if there is one, None if this is a top-level component of the signal flow. calibrationPort: int A UDP port number. Packets sent to this port trigger the calibration. razorArg: keyword list Set of parameters to the RazorAHRS. See this class for parameter documentation. """ super(RazorAHRSWithUdpCalibrationTrigger, self).__init__(context, name, parent) self.trackingOutput = visr.ParameterOutput( "orientation", self, pml.ListenerPosition.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig()) razorArgs[ 'calibrationInput'] = True # Reset the keyword argument (if already present) self.tracker = RazorAHRS(context, "Tracker", self, **razorArgs) self.triggerReceiver = UdpReceiver(context, "CalibrationTriggerReceiver", self, port=calibrationPort) self.parameterConnection( self.triggerReceiver.parameterPort("messageOutput"), self.tracker.parameterPort("calibration")) self.parameterConnection(self.tracker.parameterPort("orientation"), self.trackingOutput)
def __init__(self, context, name, parent, numberOfChannels, measurePeriod=0.4, channelWeights=None, audioOut=False): # Call the base class constructor super(LoudnessMeter, self).__init__(context, name, parent) # Define an audio input port with name "audioIn" and width (number of signal waveforms) numberOfChannels self.audioInput = visr.AudioInputFloat("audioIn", self, numberOfChannels) # If the option is set, add an audio output to put out the K-weigth input signals # Some audio interfaces don't like configs with no outputs. if audioOut: self.audioOutput = visr.AudioOutputFloat("audioOut", self, numberOfChannels) else: self.audioOutput = None # Define a parameter output port with type "Float" and communication protocol "MessageQueue" # MessageQueue means that all computed data are hold in a first-in-first-out queue, # which decouples the parameter update rate from the buffer size. self.loudnessOut = visr.ParameterOutput( "loudnessOut", self, pml.Float.staticType, pml.MessageQueueProtocol.staticType, pml.EmptyParameterConfig()) # %% Setup data used in the process() function. # Round the measurement period to the next multiple of the buffer period numMeanBlocks = int( np.ceil( (measurePeriod * context.samplingFrequency) / context.period)) self.pastPower = np.zeros(numMeanBlocks, dtype=np.float32) # IIR filter state to be saved in betweem self.filterState = np.zeros((2, numberOfChannels, 2), dtype=np.float32) # IIR coefficients for K-weighting, taken from ITU-R BS.1770-4 # https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I!!PDF-E.pdf self.Kweighting = np.asarray([[ 1.53512485958697, -2.69169618940638, 1.19839281085285, 1.0, -1.69065929318241, 0.73248077421585 ], [1.0, -2.0, 1.0, 1.0, -1.99004745483398, 0.99007225036621]], dtype=np.float32) # Initialise weightings for the channels. # Use unit weighting if none are given if channelWeights is not None: self.channelWeights = np.asarray(channelWeights, dtype=np.float32) if self.channelWeights.shape[0] != numberOfChannels: raise ValueError( "The channelWeights argument does not match the number of channels" ) else: self.channelWeights = np.ones(numberOfChannels, dtype=np.float32)
def __init__( self, context, name, parent, numberOfObjects, hoaOrder, dynamicUpdates = False, headOrientation = None ): """ Constructor. Parameters ---------- context: visr.SignalFlowContext Structure containing block size and sampling frequency, standard visr component construction parameter. name: string Name of the component, can be chosen freely as long as it is unique withion the containing component. parent: visr.CompositeComponent or NoneType The containing composite component, or None for a top-level component. numberOfObjects: int The number of objects to be rendered, i.e., columns in the received spherical harmonics matrices. hoaOrder: int The order of the spherical harmonics. Defines the number of rows of the processed matrices ((hoaOrder+1)^2) headOrientation: array-like (2- or 3- element) or NoneType The initial head rotation or the static head orientation if dynamic updates are deactivated. Given as yaw, pitch, roll. """ # Call base class (AtomicComponent) constructor super( HoaCoefficientRotation, self ).__init__( context, name, parent ) self.numberOfObjects = numberOfObjects self.hoaOrder = hoaOrder self.numHoaCoeffs = (self.hoaOrder+1)**2 # %% Define parameter ports matrixConfig = pml.MatrixParameterConfig( self.numHoaCoeffs, self.numberOfObjects ) self.coefficientInput = visr.ParameterInput( "coefficientInput", self, pml.MatrixParameterFloat.staticType, pml.SharedDataProtocol.staticType, matrixConfig ) self.coefficientInputProtocol = self.coefficientInput.protocolInput() self.coefficientOutput = visr.ParameterOutput( "coefficientOutput", self, pml.MatrixParameterFloat.staticType, pml.SharedDataProtocol.staticType, matrixConfig ) self.coefficientOutputProtocol = self.coefficientOutput.protocolOutput() # Instantiate the head tracker input. self.trackingInput = visr.ParameterInput( "tracking", self, pml.ListenerPosition.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig() ) self.trackingInputProtocol = self.trackingInput.protocolInput() if headOrientation is None: headOrientation = np.zeros( (3), np.float32 ) R1 = rotationMatrixReorderingACN( calcRotationMatrix( headOrientation ) ) self.rotationMatrices = allSphericalHarmonicsRotationMatrices( self.hoaOrder, R1 )
def __init__( self, context, name, parent, positions, # Either #points x 3 or 1x3 matrix of Cartesian object positions. updateRateSamples=None, objectId=0, groupId=0, priority=0, objectLevel=1.0, objectChannel=None, diffuseness=None): super(PointSourceTrajectoryGenerator, self).__init__(context, name, parent) if updateRateSamples % self.period() != 0: raise ValueError( "TrajectoryGenerator: The update rate must be a multiple of the period." ) self.updateCycles = updateRateSamples // self.period() self.positions = positions self.numPositions = self.positions.shape[1] self.objectOutput = visr.ParameterOutput( "objectVectorOutput", self, parameterType=pml.ObjectVector.staticType, protocolType=pml.DoubleBufferingProtocol.staticType, parameterConfig=pml.EmptyParameterConfig()) self.cycleCounter = 0 self.positionCounter = 0 if diffuseness is None: self.object = om.PointSource(objectId) else: ValueError("Diffuse point sources not currently supported.") self.object.position = positions[:, 0] self.object.level = objectLevel self.groupId = groupId self.object.priority = priority if objectChannel is None: objectChannel = objectId self.object.channels = [objectChannel]
def __init__( self, context, name, parent, arrayConfig, numberOfObjects=1, ): super(PythonPanner, self).__init__(context, name, parent) self.numLsp = arrayConfig.numberOfRegularLoudspeakers self.objectInput = visr.ParameterInput( "objectVectorInput", self, parameterType=pml.ObjectVector.staticType, protocolType=pml.DoubleBufferingProtocol.staticType, parameterConfig=pml.EmptyParameterConfig()) self.gainOutput = visr.ParameterOutput( "gainOutput", self, parameterType=pml.MatrixParameterFloat.staticType, protocolType=pml.SharedDataProtocol.staticType, parameterConfig=pml.MatrixParameterConfig(self.numLsp, numberOfObjects)) self.vbap = panning.VBAP(arrayConfig)
def __init__( self, context, name, parent, port, yawOffset=0, pitchOffset=0, rollOffset=0, yawRightHand=False, pitchRightHand=False, rollRightHand=False, calibrationInput = False # Whether to instantiate an input port to set the orientation. ): """ Constructor. Parameters ---------- context : visr.SignalFlowContext Standard visr.Component construction argument, a structure holding the block size and the sampling frequency name : string Name of the component, Standard visr.Component construction argument parent : visr.CompositeComponent Containing component if there is one, None if this is a top-level component of the signal flow. yawOffset: Initial offset for the yaw component, default 0.0 pitchOffset : float Offset for the pitch value, in degree rollOffset : float: Initial value for the roll component, default 0.0 yawRightHand: bool Whehther the yaw coordinate is interpreted as right-hand (mathematically negative) rotation. Default: False pitchRightHand: bool Whehther the pitch coordinate is interpreted as right-hand (mathematically negative) rotation. Default: False rollRightHand: bool Whehther the roll coordinate is interpreted as right-hand (mathematically negative) rotation. Default: False calibrationInput: bool Flag to determine whehter the component has an additional input "calibration" that resets the orientation offsets. At the moment, this input is of type StringParameter, and the value is ignored. TODO: Check whether to support ListenerPosition objects as calibration triggers to set the orientation to an arbitrary value """ super( RazorAHRS, self ).__init__( context, name, parent ) self.yprVec = np.zeros( 3, dtype = np.float32 ) baudRate = 57600 self.ser = serial.Serial(port, baudRate, timeout=0) self.message = "" self.sent = False self.trackingOutput = visr.ParameterOutput( "orientation", self, pml.ListenerPosition.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig() ) self.trackingOutputProtocol = self.trackingOutput.protocolOutput() if calibrationInput: self.calibrationInput = visr.ParameterInput( "calibration", self, pml.StringParameter.staticType, pml.MessageQueueProtocol.staticType, pml.EmptyParameterConfig() ) else: self.calibrationInput = None self.sentN = 0 self.parsedN = 0 self.ser.read() #necessary for the .in_waiting to work self.procN =0 self.yawOffset = yawOffset self.pitchOffset = pitchOffset self.rollOffset = rollOffset self.yawRightHand = yawRightHand self.pitchRightHand = pitchRightHand self.rollRightHand= rollRightHand self.orientation = np.array( [0.0, 0.0, 0.0 ] ) # Current orientation, unadjusted, in radian
def __init__( self, context, name, parent, # Standard visr component constructor arguments numberOfObjects, # The number of point source objects rendered. hrirPositions, # The directions of the HRTF measurements, given as a Nx3 array hrirData, # The HRTF data as 3 Nx2xL matrix, with L as the FIR length. headRadius = 0.0875, # Head radius, optional. Might be used in a dynamic ITD/ILD individualisation algorithm. useHeadTracking = False, # Whether head tracking data is provided via a self.headOrientation port. dynamicITD = False, # Whether ITD delays are calculated and sent via a "delays" port. dynamicILD = False, # Whether ILD gains are calculated and sent via a "gains" port. interpolatingConvolver = False, # Whether to transmit interpolation parameters (True) or complete interpolated filters hrirInterpolation = False, # HRTF interpolation selection: False: Nearest neighbour, True: Barycentric (3-point) interpolation channelAllocation = False, # Whether to allocate object channels dynamically (not tested yet) hrirDelays = None, # Matrix of delays associated with filter dataset. Dimension: # filters * 2 ): """ Constructor. Parameters ---------- context : visr.SignalFlowContext Standard visr.Component construction argument, a structure holding the block size and the sampling frequency name : string Name of the component, Standard visr.Component construction argument parent : visr.CompositeComponent Containing component if there is one, None if this is a top-level component of the signal flow. numberOfObjects: int The number of point source objects rendered. hrirPositions : numpy.ndaarray The directions of the HRTF measurements, given as a Nx3 array hrirData : numpy.ndarray The HRTF data as 3 Nx2xL matrix, with L as the FIR length. headRadius: float Head radius, optional and not currently used. Might be used in a dynamic ITD/ILD individualisation algorithm. useHeadTracking: bool Whether head tracking data is provided via a self.headOrientation port. dynamicITD: bool Whether ITD delays are calculated and sent via a "delays" port. dynamicILD: bool Whether ILD gains are calculated and sent via a "gains" port. hrirInterpolation: bool HRTF interpolation selection: False: Nearest neighbour, True: Barycentric (3-point) interpolation channelAllocation: bool Whether to allocate object channels dynamically (not tested yet) hrirDelays: numpy.ndarray Matrix of delays associated with filter dataset. Dimension: # filters * 2. Default None means there are no separate delays, i.e., they must be contained in the HRIR data. """ # Call base class (AtomicComponent) constructor super( DynamicHrirController, self ).__init__( context, name, parent ) self.numberOfObjects = numberOfObjects self.dynamicITD = dynamicITD self.dynamicILD = dynamicILD # %% Define parameter ports self.objectInput = visr.ParameterInput( "objectVector", self, pml.ObjectVector.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig() ) self.objectInputProtocol = self.objectInput.protocolInput() if useHeadTracking: self.useHeadTracking = True self.trackingInput = visr.ParameterInput( "headTracking", self, pml.ListenerPosition.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig() ) self.trackingInputProtocol = self.trackingInput.protocolInput() else: self.useHeadTracking = False self.trackingInputProtocol = None # Flag that head tracking is not used. self.rotationMatrix = np.identity( 3, dtype=np.float32 ) self.interpolatingConvolver = interpolatingConvolver if interpolatingConvolver: self.filterOutputProtocol = None # Used as flag to distinguish between the output modes. if not hrirInterpolation: numInterpolants = 1 elif hrirPositions.shape[-1] == 2: numInterpolants = 2 else: numInterpolants = 3 self.interpolationOutput = visr.ParameterOutput( "interpolatorOutput", self, pml.InterpolationParameter.staticType, pml.MessageQueueProtocol.staticType, pml.InterpolationParameterConfig(numInterpolants) ) self.interpolationOutputProtocol = self.interpolationOutput.protocolOutput() else: self.filterOutput = visr.ParameterOutput( "filterOutput", self, pml.IndexedVectorFloat.staticType, pml.MessageQueueProtocol.staticType, pml.EmptyParameterConfig() ) self.filterOutputProtocol = self.filterOutput.protocolOutput() self.interpolationOutputProtocol = None if self.dynamicITD: if (hrirDelays is None) or (hrirDelays.ndim != 2) or (hrirDelays.shape != (hrirData.shape[0], 2 ) ): raise ValueError( 'If the "dynamicITD" option is given, the parameter "delays" must be a #hrirs x 2 matrix.' ) self.dynamicDelays = np.array(hrirDelays, copy=True) self.delayOutput = visr.ParameterOutput( "delayOutput", self, pml.VectorParameterFloat.staticType, pml.DoubleBufferingProtocol.staticType, pml.VectorParameterConfig( 2*self.numberOfObjects) ) self.delayOutputProtocol = self.delayOutput.protocolOutput() # If we use dynamic ILD, only the object level is set at the moment. if self.dynamicILD: self.gainOutput = visr.ParameterOutput( "gainOutput", self, pml.VectorParameterFloat.staticType, pml.DoubleBufferingProtocol.staticType, pml.VectorParameterConfig( 2*self.numberOfObjects) ) self.gainOutputProtocol = self.gainOutput.protocolOutput() if channelAllocation: self.routingOutput = visr.ParameterOutput( "routingOutput", self, pml.SignalRoutingParameter.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig() ) self.routingOutputProtocol = self.routingOutput.protocolOutput() else: self.routingOutputProtocol = None # HRIR selection and interpolation data # If the interpolatingconvolver is used, only interpolation parameters are transmitted. if interpolatingConvolver: self.hrirs = None else: self.hrirs = np.array( hrirData, copy = True, dtype = np.float32 ) # Normalise the hrir positions to unit radius (to let the k-d tree # lookup work as expected.) hrirPositions[:,2] = 1.0 self.hrirPos = sph2cart(np.array( hrirPositions, copy = True, dtype = np.float32 )) self.hrirInterpolation = hrirInterpolation if self.hrirInterpolation: self.lastPosition = np.repeat( [[np.NaN, np.NaN, np.NaN]], self.numberOfObjects, axis=0 ) self.hrirLookup = ConvexHull( self.hrirPos ) self.triplets = np.transpose(self.hrirLookup.points[self.hrirLookup.simplices], axes=(0, 2, 1)) self.inverted = np.asarray( inv(self.triplets), dtype=np.float32 ) else: self.lastFilters = np.repeat( -1, self.numberOfObjects, axis=0 ) # %% Dynamic allocation of objects to channels if channelAllocation: self.channelAllocator = rbbl.ObjectChannelAllocator( self.numberOfObjects ) self.usedChannels = set() else: self.channelAllocator = None self.sourcePos = np.repeat( np.array([[1.0,0.0,0.0]], dtype = np.float32 ), self.numberOfObjects, axis = 0 ) self.levels = np.zeros( (self.numberOfObjects), dtype = np.float32 )
def __init__(self, context, name, parent, hoaOrder, dynamicOrientation=False, initialOrientation=None): """ Constructor. Parameters ---------- context: visr.SignalFlowContext Structure containing block size and sampling frequency, standard visr component construction parameter. name: string Name of the component, can be chosen freely as long as it is unique withion the containing component. parent: visr.CompositeComponent or NoneType The containing composite component, or None for a top-level component. hoaOrder: int The spherical harmonics order, determines the size of the output matrix. dynamicOrientation: bool Whether the orientation is updated at runtime. If True, a parmater input "orientation" is instantiated that receivers pml.ListenerPositions initialOrientation: array-like (2- or 3- element) or NoneType The initial head rotation or the static head orientation if dynamic updates are deactivated. Given as yaw, pitch, roll. """ # Call base class (AtomicComponent) constructor super(HoaRotationMatrixCalculator, self).__init__(context, name, parent) self.hoaOrder = hoaOrder self.numHoaCoeffs = (self.hoaOrder + 1)**2 # Number of nonzero matrix coefficients. # Explisit formula sum( (2i+1)^2 ) for i = 0 .. hoaOrder # This is always an integer (i.e., multiple of 3 before division). self.numMatrixCoeffs = ((hoaOrder + 1) * (2 * hoaOrder + 1) * (2 * hoaOrder + 3)) // 3 # %% Define parameter ports outConfig = pml.VectorParameterConfig(self.numMatrixCoeffs) self.coeffOutput = visr.ParameterOutput( "coefficients", self, pml.VectorParameterFloat.staticType, pml.DoubleBufferingProtocol.staticType, outConfig) self.coeffOutputProtocol = self.coeffOutput.protocolOutput() if dynamicOrientation: self.orientationInput = visr.ParameterInput( "orientation", self, pml.ListenerPosition.staticType, pml.DoubleBufferingProtocol.staticType, pml.EmptyParameterConfig()) self.orientationInputProtocol = self.orientationInput.protocolInput( ) else: self.orientationInputProtocol is None if initialOrientation is None: initialOrientation = np.zeros((3), np.float32) else: initialOrientation = np.asarray(initialOrientation, dtype=np.float32) if initialOrientation.size < 3: initialOrientation = np.concatenate( (initialOrientation, np.zeros(3 - initialOrientation.size, dtype=np.float32))) R1 = rotationMatrixReorderingACN( calcRotationMatrix(initialOrientation)) self.rotationMatrices = allSphericalHarmonicsRotationMatrices( self.hoaOrder, R1)