Пример #1
0
def extract_clusters(
    cfg: AttrDict,
    dist_run_id: str,
    checkpoint_folder: str,
    local_rank: int = 0,
    node_id: int = 0,
):
    """
    Sets up and executes model visualisation extraction workflow on one node
    """

    # setup the environment variables
    set_env_vars(local_rank, node_id, cfg)
    dist_rank = int(os.environ["RANK"])

    # setup logging
    setup_logging(__name__, output_dir=checkpoint_folder, rank=dist_rank)

    logging.info(f"Env set for rank: {local_rank}, dist_rank: {dist_rank}")
    # print the environment info for the current node
    if local_rank == 0:
        current_env = os.environ.copy()
        print_system_env_info(current_env)

    # setup the multiprocessing to be forkserver.
    # See https://fb.quip.com/CphdAGUaM5Wf
    setup_multiprocessing_method(cfg.MULTI_PROCESSING_METHOD)

    # set seeds
    logging.info("Setting seed....")
    set_seeds(cfg, dist_rank)

    # We set the CUDA device here as well as a safe solution for all downstream
    # `torch.cuda.current_device()` calls to return correct device.
    if cfg.MACHINE.DEVICE == "gpu" and torch.cuda.is_available():
        local_rank, _ = get_machine_local_and_dist_rank()
        torch.cuda.set_device(local_rank)

    # print the training settings and system settings
    if local_rank == 0:
        print_cfg(cfg)
        logging.info("System config:\n{}".format(collect_env_info()))

    # Build the SSL trainer to set up distributed training and then
    # extract the cluster assignments for all entries in the dataset
    trainer = SelfSupervisionTrainer(cfg, dist_run_id)
    cluster_assignments = trainer.extract_clusters()

    # Save the cluster assignments in the output folder
    if dist_rank == 0:
        ClusterAssignmentLoader.save_cluster_assignment(
            output_dir=get_checkpoint_folder(cfg),
            assignments=ClusterAssignment(
                config=cfg, cluster_assignments=cluster_assignments),
        )

    # close the logging streams including the file handlers
    logging.info("All Done!")
    shutdown_logging()
Пример #2
0
def extract_main(
    cfg: AttrDict,
    dist_run_id: str,
    checkpoint_folder: str,
    local_rank: int = 0,
    node_id: int = 0,
):
    """
    Sets up and executes feature extraction workflow per machine.

    Args:
        cfg (AttrDict): user specified input config that has optimizer, loss, meters etc
                        settings relevant to the training
        dist_run_id (str): For multi-gpu training with PyTorch, we have to specify
                           how the gpus are going to rendezvous. This requires specifying
                           the communication method: file, tcp and the unique rendezvous
                           run_id that is specific to 1 run.
                           We recommend:
                                1) for 1node: use init_method=tcp and run_id=auto
                                2) for multi-node, use init_method=tcp and specify
                                run_id={master_node}:{port}
        local_rank (int): id of the current device on the machine. If using gpus,
                        local_rank = gpu number on the current machine
        node_id (int): id of the current machine. starts from 0. valid for multi-gpu
    """

    # setup the environment variables
    set_env_vars(local_rank, node_id, cfg)
    dist_rank = int(os.environ["RANK"])

    # setup logging
    setup_logging(__name__, output_dir=checkpoint_folder, rank=dist_rank)

    logging.info(f"Env set for rank: {local_rank}, dist_rank: {dist_rank}")
    # print the environment info for the current node
    if local_rank == 0:
        current_env = os.environ.copy()
        print_system_env_info(current_env)

    # setup the multiprocessing to be forkserver.
    # See https://fb.quip.com/CphdAGUaM5Wf
    setup_multiprocessing_method(cfg.MULTI_PROCESSING_METHOD)

    # set seeds
    logging.info("Setting seed....")
    set_seeds(cfg, dist_rank)

    # We set the CUDA device here as well as a safe solution for all downstream
    # `torch.cuda.current_device()` calls to return correct device.
    if cfg.MACHINE.DEVICE == "gpu" and torch.cuda.is_available():
        local_rank, _ = get_machine_local_and_dist_rank()
        torch.cuda.set_device(local_rank)

    # print the training settings and system settings
    if local_rank == 0:
        print_cfg(cfg)
        logging.info("System config:\n{}".format(collect_env_info()))

    trainer = SelfSupervisionTrainer(cfg, dist_run_id)
    features = trainer.extract()

    for split in features.keys():
        logging.info(f"============== Split: {split} =======================")
        for layer_name, layer_features in features[split].items():
            out_feat_file = os.path.join(
                checkpoint_folder,
                f"rank{dist_rank}_{split}_{layer_name}_features.npy")
            out_target_file = os.path.join(
                checkpoint_folder,
                f"rank{dist_rank}_{split}_{layer_name}_targets.npy")
            out_inds_file = os.path.join(
                checkpoint_folder,
                f"rank{dist_rank}_{split}_{layer_name}_inds.npy")
            feat_shape = layer_features["features"].shape
            logging.info(
                f"Saving extracted features of {layer_name} with shape {feat_shape} to: {out_feat_file}"
            )
            save_file(layer_features["features"], out_feat_file)
            logging.info(
                f"Saving extracted targets of {layer_name} to: {out_target_file}"
            )
            save_file(layer_features["targets"], out_target_file)
            logging.info(
                f"Saving extracted indices of {layer_name} to: {out_inds_file}"
            )
            save_file(layer_features["inds"], out_inds_file)

    logging.info("All Done!")
    # close the logging streams including the filehandlers
    shutdown_logging()
Пример #3
0
def extract_label_predictions_main(
    cfg: AttrDict,
    dist_run_id: str,
    checkpoint_folder: str,
    local_rank: int = 0,
    node_id: int = 0,
):
    """
    Sets up and executes label predictions workflow per machine. Runs the
    model in eval mode only to extract the label predicted per class.

    Args:
        cfg (AttrDict): user specified input config that has optimizer, loss, meters etc
                        settings relevant for the feature extraction.
        dist_run_id (str): For multi-gpu training with PyTorch, we have to specify
                           how the gpus are going to rendezvous. This requires specifying
                           the communication method: file, tcp and the unique rendezvous
                           run_id that is specific to 1 run.
                           We recommend:
                                1) for 1node: use init_method=tcp and run_id=auto
                                2) for multi-node, use init_method=tcp and specify
                                run_id={master_node}:{port}
        local_rank (int): id of the current device on the machine. If using gpus,
                        local_rank = gpu number on the current machine
        node_id (int): id of the current machine. starts from 0. valid for multi-gpu
    """

    # setup the environment variables
    set_env_vars(local_rank, node_id, cfg)
    dist_rank = int(os.environ["RANK"])

    # setup logging
    setup_logging(__name__, output_dir=checkpoint_folder, rank=dist_rank)

    # setup the multiprocessing to be forkserver. See https://fb.quip.com/CphdAGUaM5Wf
    logging.info(
        f"Setting multiprocessing method: {cfg.MULTI_PROCESSING_METHOD}")
    setup_multiprocessing_method(cfg.MULTI_PROCESSING_METHOD)

    # set seeds
    logging.info("Setting seed....")
    set_seeds(cfg, dist_rank)

    # We set the CUDA device here as well as a safe solution for all downstream
    # `torch.cuda.current_device()` calls to return correct device.
    if cfg.MACHINE.DEVICE == "gpu" and torch.cuda.is_available():
        local_rank, _ = get_machine_local_and_dist_rank()
        torch.cuda.set_device(local_rank)

    # print the training settings and system settings
    # print the environment info for the current node
    logging.info(f"Env set for rank: {local_rank}, dist_rank: {dist_rank}")
    if local_rank == 0:
        current_env = os.environ.copy()
        print_system_env_info(current_env)
        print_cfg(cfg)
        logging.info(f"System config:\n{collect_env_info()}")

    # Identify the hooks to run for the extract label engine
    # TODO - we need to plug this better with the engine registry
    #  - we either need to use the global hooks registry
    #  - or we need to create specific hook registry by engine
    hooks = extract_label_hook_generator(cfg)

    trainer = SelfSupervisionTrainer(cfg, dist_run_id, hooks=hooks)
    trainer.extract(
        output_folder=cfg.EXTRACT_FEATURES.OUTPUT_DIR or checkpoint_folder,
        extract_features=False,
        extract_predictions=True,
    )

    logging.info("All Done!")
    # close the logging streams including the filehandlers
    shutdown_logging()
Пример #4
0
def train_main(
    cfg: AttrDict,
    dist_run_id: str,
    checkpoint_path: str,
    checkpoint_folder: str,
    local_rank: int = 0,
    node_id: int = 0,
    hook_generator: Callable[[Any], List[ClassyHook]] = default_hook_generator,
):
    """
    Sets up and executes training workflow per machine.

    Args:
        cfg (AttrDict): user specified input config that has optimizer, loss, meters etc
                        settings relevant to the training
        dist_run_id (str): For multi-gpu training with PyTorch, we have to specify
                           how the gpus are going to rendezvous. This requires specifying
                           the communication method: file, tcp and the unique rendezvous
                           run_id that is specific to 1 run.
                           We recommend:
                                1) for 1node: use init_method=tcp and run_id=auto
                                2) for multi-node, use init_method=tcp and specify
                                run_id={master_node}:{port}
        checkpoint_path (str): if the training is being resumed from a checkpoint, path to
                          the checkpoint. The tools/run_distributed_engines.py automatically
                          looks for the checkpoint in the checkpoint directory.
        checkpoint_folder (str): what directory to use for checkpointing. The
                          tools/run_distributed_engines.py creates the directory based on user
                          input in the yaml config file.
        local_rank (int): id of the current device on the machine. If using gpus,
                        local_rank = gpu number on the current machine
        node_id (int): id of the current machine. starts from 0. valid for multi-gpu
        hook_generator (Callable): The utility function that prepares all the hoooks that will
                         be used in training based on user selection. Some basic hooks are used
                         by default.
    """

    # setup the environment variables
    set_env_vars(local_rank, node_id, cfg)
    dist_rank = int(os.environ["RANK"])

    # setup logging
    setup_logging(__name__, output_dir=checkpoint_folder, rank=dist_rank)

    logging.info(f"Env set for rank: {local_rank}, dist_rank: {dist_rank}")
    # print the environment info for the current node
    if local_rank == 0:
        current_env = os.environ.copy()
        print_system_env_info(current_env)

    # setup the multiprocessing to be forkserver.
    # See https://fb.quip.com/CphdAGUaM5Wf
    setup_multiprocessing_method(cfg.MULTI_PROCESSING_METHOD)

    # set seeds
    logging.info("Setting seed....")
    set_seeds(cfg, dist_rank)

    # We set the CUDA device here as well as a safe solution for all downstream
    # `torch.cuda.current_device()` calls to return correct device.
    if cfg.MACHINE.DEVICE == "gpu" and torch.cuda.is_available():
        local_rank, _ = get_machine_local_and_dist_rank()
        torch.cuda.set_device(local_rank)

    # print the training settings and system settings
    if local_rank == 0:
        print_cfg(cfg)
        logging.info("System config:\n{}".format(collect_env_info()))

    # get the hooks - these hooks are executed per replica
    hooks = hook_generator(cfg)

    # build the SSL trainer. The trainer first prepares a "task" object which
    # acts as a container for various things needed in a training: datasets,
    # dataloader, optimizers, losses, hooks, etc. "Task" will also have information
    # about phases (train, test) both. The trainer then sets up distributed
    # training.
    trainer = SelfSupervisionTrainer(
        cfg, dist_run_id, checkpoint_path, checkpoint_folder, hooks
    )
    trainer.train()
    logging.info("All Done!")
    # close the logging streams including the filehandlers
    shutdown_logging()
Пример #5
0
def extract_features_main(
    cfg: AttrDict,
    dist_run_id: str,
    checkpoint_folder: str,
    local_rank: int = 0,
    node_id: int = 0,
):
    """
    Sets up and executes feature extraction workflow per machine.

    Args:
        cfg (AttrDict): user specified input config that has optimizer, loss, meters etc
                        settings relevant to the training
        dist_run_id (str): For multi-gpu training with PyTorch, we have to specify
                           how the gpus are going to rendezvous. This requires specifying
                           the communication method: file, tcp and the unique rendezvous
                           run_id that is specific to 1 run.
                           We recommend:
                                1) for 1node: use init_method=tcp and run_id=auto
                                2) for multi-node, use init_method=tcp and specify
                                run_id={master_node}:{port}
        checkpoint_folder (str): what directory to use for checkpointing. This folder
                                 will be used to output the extracted features as well
                                 in case config.EXTRACT_FEATURES.OUTPUT_DIR is not set
        local_rank (int): id of the current device on the machine. If using gpus,
                        local_rank = gpu number on the current machine
        node_id (int): id of the current machine. starts from 0. valid for multi-gpu
    """

    # setup the environment variables
    set_env_vars(local_rank, node_id, cfg)
    dist_rank = int(os.environ["RANK"])

    # setup logging
    setup_logging(__name__, output_dir=checkpoint_folder, rank=dist_rank)

    logging.info(f"Env set for rank: {local_rank}, dist_rank: {dist_rank}")
    # print the environment info for the current node
    if local_rank == 0:
        current_env = os.environ.copy()
        print_system_env_info(current_env)

    # setup the multiprocessing to be forkserver.
    # See https://fb.quip.com/CphdAGUaM5Wf
    setup_multiprocessing_method(cfg.MULTI_PROCESSING_METHOD)

    # set seeds
    logging.info("Setting seed....")
    set_seeds(cfg, dist_rank)

    # We set the CUDA device here as well as a safe solution for all downstream
    # `torch.cuda.current_device()` calls to return correct device.
    if cfg.MACHINE.DEVICE == "gpu" and torch.cuda.is_available():
        local_rank, _ = get_machine_local_and_dist_rank()
        torch.cuda.set_device(local_rank)

    # print the training settings and system settings
    if local_rank == 0:
        print_cfg(cfg)
        logging.info("System config:\n{}".format(collect_env_info()))

    # Identify the hooks to run for the extract label engine
    # TODO - we need to plug this better with the engine registry
    #  - we either need to use the global hooks registry
    #  - or we need to create specific hook registry by engine
    hooks = extract_features_hook_generator(cfg)

    # Run the label prediction extraction
    trainer = SelfSupervisionTrainer(cfg, dist_run_id, hooks=hooks)
    output_dir = cfg.EXTRACT_FEATURES.OUTPUT_DIR or checkpoint_folder
    trainer.extract(
        output_folder=cfg.EXTRACT_FEATURES.OUTPUT_DIR or checkpoint_folder,
        extract_features=True,
        extract_predictions=False,
    )

    # TODO (prigoyal): merge this function with _extract_features
    if dist_rank == 0 and cfg.EXTRACT_FEATURES.MAP_FEATURES_TO_IMG_NAME:
        # Get the names of the features that we extracted features for. If user doesn't
        # specify the features to evaluate, we get the full model output and freeze
        # head/trunk both as caution.
        layers = get_trunk_output_feature_names(cfg.MODEL)
        if len(layers) == 0:
            layers = ["heads"]
        available_splits = [
            item.lower() for item in trainer.task.available_splits
        ]
        for split in available_splits:
            image_paths = trainer.task.datasets[split].get_image_paths()[0]
            for layer in layers:
                ExtractedFeaturesLoader.map_features_to_img_filepath(
                    image_paths=image_paths,
                    input_dir=output_dir,
                    split=split,
                    layer=layer,
                )

    logging.info("All Done!")
    # close the logging streams including the filehandlers
    shutdown_logging()