import time import json import logging import os logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.DEBUG) seed = 2016 plot = True imputer = Imputer() scaler = StandardScaler() activity_names = json.load(open('../input/public_data/annotations.json', 'r')) class_weights = np.asarray( json.load(open('../input/public_data/class_weights.json', 'r'))) plotter = SequenceVisualisation('../input/public_data', '../input/public_data/train/00001') annotation_names = plotter.targets.columns.difference(['start', 'end']) def brier_score(given, predicted): global class_weights return np.power(given - predicted, 2.0).dot(class_weights).mean() def xgb_brier_score(preds, dtrain): global train_y idx = dtrain.get_float_info("true_label") labels = train_y[idx] predicted = preds.reshape(labels.shape[0], 20) return 'brier', brier_score(labels, predicted)
import sys from visualise_data import SequenceVisualisation sns.set_context('poster') sns.set_style('darkgrid') current_palette = cycle(sns.color_palette()) nb_dir = os.path.split(os.getcwd())[0] if nb_dir not in sys.path: sys.path.append(nb_dir) public_data_path = './public_data' metadata_path = './public_data/metadata' plotter = SequenceVisualisation(metadata_path, public_data_path + '/train/00001') sequence_window = (plotter.meta['start'], plotter.meta['end']) # plotter.plot_pir(sequence_window, sharey=True) # plotter.plot_rssi(sequence_window) # plotter.plot_acceleration((sequence_window[0] + 180, sequence_window[0] + 300)) # plotter.plot_video(plotter.centre_2d, sequence_window) # pl.gcf().suptitle('2D bounding box') # plotter.plot_video(plotter.centre_3d, sequence_window) # pl.gcf().suptitle('3D bounding box') # pl.show() ##### plot annotations